ระยะการพัฒนา ML

โปรเจ็กต์ ML จะมีความคืบหน้าเป็นระยะๆ โดยมีเป้าหมาย งาน และผลลัพธ์ที่เฉพาะเจาะจง การทำความเข้าใจขั้นตอนการพัฒนา ML อย่างชัดเจนจะช่วยกำหนดความรับผิดชอบด้านวิศวกรรม จัดการความคาดหวังของผู้มีส่วนเกี่ยวข้อง และจัดสรรทรัพยากรได้อย่างมีประสิทธิภาพ

การก้าวผ่านแต่ละเฟส (มักจะทำซ้ำ) อย่างประสบความสำเร็จเป็นรากฐาน ในการออกแบบ ประกอบ และสร้างโมเดล ML ที่แก้ปัญหาทางธุรกิจ ในระยะยาว

การติดตั้งใช้งานโซลูชัน ML ในระดับสูงประกอบด้วยระยะต่อไปนี้

  1. การหาไอเดียและการวางแผน
  2. การทดลอง
  3. การสร้างไปป์ไลน์
  4. การนำไปใช้งานจริง

การหาไอเดียและการวางแผน

ในระยะการระดมความคิดและการวางแผน คุณจะกำหนดปัญหาในแง่ของ โซลูชัน ML และประเมินความเป็นไปได้ของโปรเจ็กต์

  • เป้าหมาย: เพื่อพิจารณาว่า ML เป็นโซลูชันที่ดีที่สุดสำหรับปัญหาของคุณหรือไม่
  • งาน: วิเคราะห์ปัญหาทางธุรกิจเพื่อทําความเข้าใจข้อจํากัดของโปรเจ็กต์
  • ผลลัพธ์: เอกสารการออกแบบที่อธิบายวิธีแก้ปัญหาด้วยโซลูชัน ML

การทดลอง

การทดลองเป็นหัวใจสำคัญของแมชชีนเลิร์นนิง ในระยะนี้ คุณจะยืนยันว่าโซลูชัน ML สามารถใช้งานได้ การค้นหาโซลูชันเป็น กระบวนการที่ต้องทำซ้ำ การทดลองหลายร้อยครั้งก่อนที่จะพบชุดค่าผสมที่เหมาะสมของฟีเจอร์ ไฮเปอร์พารามิเตอร์ และสถาปัตยกรรมโมเดลที่แก้ปัญหาได้ถือเป็นเรื่องปกติ

  • เป้าหมาย: สร้างโมเดลที่แก้ปัญหาทางธุรกิจ
  • งาน: ทดลองใช้ฟีเจอร์ ไฮเปอร์พารามิเตอร์ และสถาปัตยกรรมโมเดล
  • ผลลัพธ์: โมเดลที่มีคุณภาพดีพอที่จะนำไปใช้ในการผลิต

การสร้างไปป์ไลน์และการนำไปใช้งานจริง

ในระหว่างขั้นตอนการสร้างไปป์ไลน์และการนำไปใช้งานจริง คุณจะสร้างไปป์ไลน์ สำหรับการประมวลผลข้อมูล การฝึกโมเดล และการแสดงการคาดการณ์ จากนั้นคุณจะ นํารุ่นและไปป์ไลน์ไปใช้งานจริงพร้อมโครงสร้างพื้นฐานด้านการตรวจสอบและ การบันทึกที่จําเป็น

  • เป้าหมาย: สร้างและติดตั้งใช้งานโครงสร้างพื้นฐานสำหรับการปรับขนาด การตรวจสอบ และการบำรุงรักษาโมเดลในเวอร์ชันที่ใช้งานจริง
  • งาน: สร้างไปป์ไลน์เพื่อทำให้งานจำนวนมากเป็นแบบอัตโนมัติเพื่อรักษาโมเดลที่อัปเดตล่าสุดในเวอร์ชันที่ใช้งานจริง
  • ผลลัพธ์: ไปป์ไลน์ ML ที่ผ่านการตรวจสอบแล้ว

เวิร์กโฟลว์ ML แบบต้นทางถึงปลายทาง

แผนภาพต่อไปนี้แสดงเวิร์กโฟลว์ ML แบบต้นทางถึงปลายทางทั้งหมด โดยแสดง แต่ละเฟส รวมถึงงานและผลลัพธ์ของแต่ละเฟส

เวิร์กโฟลว์ ML แบบต้นทางถึงปลายทาง

รูปที่ 1 เวิร์กโฟลว์ ML มี 4 ขั้นตอนหลัก

โปรดทราบ

แต่ละระยะมีอุปสรรคหลายอย่าง การไม่ตระหนักถึงและวางแผนสำหรับข้อจำกัดเหล่านี้อาจทำให้กำหนดเวลาพลาด วิศวกรไม่พอใจ และโปรเจ็กต์ล้มเหลว

ทดสอบความเข้าใจ

คุณเพิ่งอ่านเกี่ยวกับเทคโนโลยี ML บางอย่างที่อาจเป็นประโยชน์ต่อผลิตภัณฑ์ของคุณ สิ่งที่ควรดำเนินการต่อ
ก่อนที่จะเสียเวลาในการร่างเอกสารการออกแบบหรือเขียนโค้ด คุณ ควรตรวจสอบก่อนว่า ML เป็นโซลูชันที่เหมาะสมกับปัญหาของคุณ หรือไม่
ถูกต้อง ก่อนที่จะเสียเวลาเขียนเอกสารการออกแบบหรือเขียนโค้ด คุณควรตรวจสอบก่อนว่า ML เป็น โซลูชันที่เหมาะสมกับปัญหาของคุณ
ร่างเอกสารการออกแบบที่ระบุกรณีการใช้งาน ML และโครงสร้างพื้นฐานที่จำเป็น ในการใช้งาน
ก่อนร่างเอกสารการออกแบบ คุณควรตรวจสอบก่อนว่า ML เป็น โซลูชันที่เหมาะสมกับปัญหาของคุณ
ค้นหาตัวอย่างโค้ดและเริ่มทดลองเพื่อดูว่าโมเดล สามารถทําการคาดการณ์ได้ดีหรือไม่
ก่อนที่จะเขียนโค้ด คุณควรตรวจสอบก่อนว่า ML เป็น โซลูชันที่เหมาะสมกับปัญหาของคุณ