[[["เข้าใจง่าย","easyToUnderstand","thumb-up"],["แก้ปัญหาของฉันได้","solvedMyProblem","thumb-up"],["อื่นๆ","otherUp","thumb-up"]],[["ไม่มีข้อมูลที่ฉันต้องการ","missingTheInformationINeed","thumb-down"],["ซับซ้อนเกินไป/มีหลายขั้นตอนมากเกินไป","tooComplicatedTooManySteps","thumb-down"],["ล้าสมัย","outOfDate","thumb-down"],["ปัญหาเกี่ยวกับการแปล","translationIssue","thumb-down"],["ตัวอย่าง/ปัญหาเกี่ยวกับโค้ด","samplesCodeIssue","thumb-down"],["อื่นๆ","otherDown","thumb-down"]],["อัปเดตล่าสุด 2025-07-27 UTC"],[[["This course explores common data traps encountered in machine learning, encompassing dataset quality, thinking processes, visualization, and statistical analysis."],["Machine learning practitioners must critically assess their datasets, identifying potential biases, confounding factors, and downstream issues arising from data usage."],["Thoroughly understanding data characteristics and collection conditions is crucial for mitigating data pitfalls and ensuring robust machine learning models."],["Confirmation bias should be actively addressed, and data findings should be validated against intuition and common sense, prompting further investigation where discrepancies exist."],["Further insights into data analysis and interpretation can be gained from the listed additional reading materials covering topics like chart interpretation, statistical manipulation, and map-based data representation."]]],[]]