Returns the trials Resource.
create(parent=None, body=None, studyId=None, x__xgafv=None)
Creates a study.
Deletes a study.
Gets a study.
list(parent=None, x__xgafv=None)
Lists all the studies in a region for an associated project.
create(parent=None, body=None, studyId=None, x__xgafv=None)
Creates a study. Args: parent: string, Required. The project and location that the study belongs to. Format: projects/{project}/locations/{location} (required) body: object, The request body. The object takes the form of: { # A message representing a Study. "inactiveReason": "A String", # Output only. A human readable reason why the Study is inactive. # This should be empty if a study is ACTIVE or COMPLETED. "state": "A String", # Output only. The detailed state of a study. "name": "A String", # Output only. The name of a study. "studyConfig": { # Represents configuration of a study. # Required. Configuration of the study. "metrics": [ # Metric specs for the study. { # Represents a metric to optimize. "metric": "A String", # Required. The name of the metric. "goal": "A String", # Required. The optimization goal of the metric. }, ], "automatedStoppingConfig": { # Configuration for Automated Early Stopping of Trials. If no # Configuration for automated stopping of unpromising Trials. # implementation_config is set, automated early stopping will not be run. "decayCurveStoppingConfig": { "useElapsedTime": True or False, # If true, measurement.elapsed_time is used as the x-axis of each # Trials Decay Curve. Otherwise, Measurement.steps will be used as the # x-axis. }, "medianAutomatedStoppingConfig": { # The median automated stopping rule stops a pending trial if the trial's # best objective_value is strictly below the median 'performance' of all # completed trials reported up to the trial's last measurement. # Currently, 'performance' refers to the running average of the objective # values reported by the trial in each measurement. "useElapsedTime": True or False, # If true, the median automated stopping rule applies to # measurement.use_elapsed_time, which means the elapsed_time field of # the current trial's # latest measurement is used to compute the median objective # value for each completed trial. }, }, "parameters": [ # Required. The set of parameters to tune. { # Represents a single parameter to optimize. "discreteValueSpec": { # The value spec for a 'DISCRETE' parameter. "values": [ # Must be specified if type is `DISCRETE`. # A list of feasible points. # The list should be in strictly increasing order. For instance, this # parameter might have possible settings of 1.5, 2.5, and 4.0. This list # should not contain more than 1,000 values. 3.14, ], }, "categoricalValueSpec": { # The value spec for a 'CATEGORICAL' parameter. "values": [ # Must be specified if type is `CATEGORICAL`. # The list of possible categories. "A String", ], }, "parentCategoricalValues": { # Represents the spec to match categorical values from parent parameter. "values": [ # Matches values of the parent parameter with type 'CATEGORICAL'. # All values must exist in `categorical_value_spec` of parent parameter. "A String", ], }, "integerValueSpec": { # The value spec for an 'INTEGER' parameter. "maxValue": "A String", # Must be specified if type is `INTEGER`. Maximum value of the parameter. "minValue": "A String", # Must be specified if type is `INTEGER`. Minimum value of the parameter. }, "parentIntValues": { # Represents the spec to match integer values from parent parameter. "values": [ # Matches values of the parent parameter with type 'INTEGER'. # All values must lie in `integer_value_spec` of parent parameter. "A String", ], }, "parentDiscreteValues": { # Represents the spec to match discrete values from parent parameter. "values": [ # Matches values of the parent parameter with type 'DISCRETE'. # All values must exist in `discrete_value_spec` of parent parameter. 3.14, ], }, "childParameterSpecs": [ # A child node is active if the parameter's value matches the child node's # matching_parent_values. # # If two items in child_parameter_specs have the same name, they must have # disjoint matching_parent_values. # Object with schema name: GoogleCloudMlV1_StudyConfig_ParameterSpec ], "doubleValueSpec": { # The value spec for a 'DOUBLE' parameter. "maxValue": 3.14, # Must be specified if type is `DOUBLE`. Maximum value of the parameter. "minValue": 3.14, # Must be specified if type is `DOUBLE`. Minimum value of the parameter. }, "parameter": "A String", # Required. The parameter name must be unique amongst all ParameterSpecs. "type": "A String", # Required. The type of the parameter. "scaleType": "A String", # How the parameter should be scaled. # Leave unset for categorical parameters. }, ], "algorithm": "A String", # The search algorithm specified for the study. }, "createTime": "A String", # Output only. Time at which the study was created. } studyId: string, Required. The ID to use for the study, which will become the final component of the study's resource name. x__xgafv: string, V1 error format. Allowed values 1 - v1 error format 2 - v2 error format Returns: An object of the form: { # A message representing a Study. "inactiveReason": "A String", # Output only. A human readable reason why the Study is inactive. # This should be empty if a study is ACTIVE or COMPLETED. "state": "A String", # Output only. The detailed state of a study. "name": "A String", # Output only. The name of a study. "studyConfig": { # Represents configuration of a study. # Required. Configuration of the study. "metrics": [ # Metric specs for the study. { # Represents a metric to optimize. "metric": "A String", # Required. The name of the metric. "goal": "A String", # Required. The optimization goal of the metric. }, ], "automatedStoppingConfig": { # Configuration for Automated Early Stopping of Trials. If no # Configuration for automated stopping of unpromising Trials. # implementation_config is set, automated early stopping will not be run. "decayCurveStoppingConfig": { "useElapsedTime": True or False, # If true, measurement.elapsed_time is used as the x-axis of each # Trials Decay Curve. Otherwise, Measurement.steps will be used as the # x-axis. }, "medianAutomatedStoppingConfig": { # The median automated stopping rule stops a pending trial if the trial's # best objective_value is strictly below the median 'performance' of all # completed trials reported up to the trial's last measurement. # Currently, 'performance' refers to the running average of the objective # values reported by the trial in each measurement. "useElapsedTime": True or False, # If true, the median automated stopping rule applies to # measurement.use_elapsed_time, which means the elapsed_time field of # the current trial's # latest measurement is used to compute the median objective # value for each completed trial. }, }, "parameters": [ # Required. The set of parameters to tune. { # Represents a single parameter to optimize. "discreteValueSpec": { # The value spec for a 'DISCRETE' parameter. "values": [ # Must be specified if type is `DISCRETE`. # A list of feasible points. # The list should be in strictly increasing order. For instance, this # parameter might have possible settings of 1.5, 2.5, and 4.0. This list # should not contain more than 1,000 values. 3.14, ], }, "categoricalValueSpec": { # The value spec for a 'CATEGORICAL' parameter. "values": [ # Must be specified if type is `CATEGORICAL`. # The list of possible categories. "A String", ], }, "parentCategoricalValues": { # Represents the spec to match categorical values from parent parameter. "values": [ # Matches values of the parent parameter with type 'CATEGORICAL'. # All values must exist in `categorical_value_spec` of parent parameter. "A String", ], }, "integerValueSpec": { # The value spec for an 'INTEGER' parameter. "maxValue": "A String", # Must be specified if type is `INTEGER`. Maximum value of the parameter. "minValue": "A String", # Must be specified if type is `INTEGER`. Minimum value of the parameter. }, "parentIntValues": { # Represents the spec to match integer values from parent parameter. "values": [ # Matches values of the parent parameter with type 'INTEGER'. # All values must lie in `integer_value_spec` of parent parameter. "A String", ], }, "parentDiscreteValues": { # Represents the spec to match discrete values from parent parameter. "values": [ # Matches values of the parent parameter with type 'DISCRETE'. # All values must exist in `discrete_value_spec` of parent parameter. 3.14, ], }, "childParameterSpecs": [ # A child node is active if the parameter's value matches the child node's # matching_parent_values. # # If two items in child_parameter_specs have the same name, they must have # disjoint matching_parent_values. # Object with schema name: GoogleCloudMlV1_StudyConfig_ParameterSpec ], "doubleValueSpec": { # The value spec for a 'DOUBLE' parameter. "maxValue": 3.14, # Must be specified if type is `DOUBLE`. Maximum value of the parameter. "minValue": 3.14, # Must be specified if type is `DOUBLE`. Minimum value of the parameter. }, "parameter": "A String", # Required. The parameter name must be unique amongst all ParameterSpecs. "type": "A String", # Required. The type of the parameter. "scaleType": "A String", # How the parameter should be scaled. # Leave unset for categorical parameters. }, ], "algorithm": "A String", # The search algorithm specified for the study. }, "createTime": "A String", # Output only. Time at which the study was created. }
delete(name=*, x__xgafv=None)
Deletes a study. Args: name: string, Required. The study name. (required) x__xgafv: string, V1 error format. Allowed values 1 - v1 error format 2 - v2 error format Returns: An object of the form: { # A generic empty message that you can re-use to avoid defining duplicated # empty messages in your APIs. A typical example is to use it as the request # or the response type of an API method. For instance: # # service Foo { # rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); # } # # The JSON representation for `Empty` is empty JSON object `{}`. }
get(name=*, x__xgafv=None)
Gets a study. Args: name: string, Required. The study name. (required) x__xgafv: string, V1 error format. Allowed values 1 - v1 error format 2 - v2 error format Returns: An object of the form: { # A message representing a Study. "inactiveReason": "A String", # Output only. A human readable reason why the Study is inactive. # This should be empty if a study is ACTIVE or COMPLETED. "state": "A String", # Output only. The detailed state of a study. "name": "A String", # Output only. The name of a study. "studyConfig": { # Represents configuration of a study. # Required. Configuration of the study. "metrics": [ # Metric specs for the study. { # Represents a metric to optimize. "metric": "A String", # Required. The name of the metric. "goal": "A String", # Required. The optimization goal of the metric. }, ], "automatedStoppingConfig": { # Configuration for Automated Early Stopping of Trials. If no # Configuration for automated stopping of unpromising Trials. # implementation_config is set, automated early stopping will not be run. "decayCurveStoppingConfig": { "useElapsedTime": True or False, # If true, measurement.elapsed_time is used as the x-axis of each # Trials Decay Curve. Otherwise, Measurement.steps will be used as the # x-axis. }, "medianAutomatedStoppingConfig": { # The median automated stopping rule stops a pending trial if the trial's # best objective_value is strictly below the median 'performance' of all # completed trials reported up to the trial's last measurement. # Currently, 'performance' refers to the running average of the objective # values reported by the trial in each measurement. "useElapsedTime": True or False, # If true, the median automated stopping rule applies to # measurement.use_elapsed_time, which means the elapsed_time field of # the current trial's # latest measurement is used to compute the median objective # value for each completed trial. }, }, "parameters": [ # Required. The set of parameters to tune. { # Represents a single parameter to optimize. "discreteValueSpec": { # The value spec for a 'DISCRETE' parameter. "values": [ # Must be specified if type is `DISCRETE`. # A list of feasible points. # The list should be in strictly increasing order. For instance, this # parameter might have possible settings of 1.5, 2.5, and 4.0. This list # should not contain more than 1,000 values. 3.14, ], }, "categoricalValueSpec": { # The value spec for a 'CATEGORICAL' parameter. "values": [ # Must be specified if type is `CATEGORICAL`. # The list of possible categories. "A String", ], }, "parentCategoricalValues": { # Represents the spec to match categorical values from parent parameter. "values": [ # Matches values of the parent parameter with type 'CATEGORICAL'. # All values must exist in `categorical_value_spec` of parent parameter. "A String", ], }, "integerValueSpec": { # The value spec for an 'INTEGER' parameter. "maxValue": "A String", # Must be specified if type is `INTEGER`. Maximum value of the parameter. "minValue": "A String", # Must be specified if type is `INTEGER`. Minimum value of the parameter. }, "parentIntValues": { # Represents the spec to match integer values from parent parameter. "values": [ # Matches values of the parent parameter with type 'INTEGER'. # All values must lie in `integer_value_spec` of parent parameter. "A String", ], }, "parentDiscreteValues": { # Represents the spec to match discrete values from parent parameter. "values": [ # Matches values of the parent parameter with type 'DISCRETE'. # All values must exist in `discrete_value_spec` of parent parameter. 3.14, ], }, "childParameterSpecs": [ # A child node is active if the parameter's value matches the child node's # matching_parent_values. # # If two items in child_parameter_specs have the same name, they must have # disjoint matching_parent_values. # Object with schema name: GoogleCloudMlV1_StudyConfig_ParameterSpec ], "doubleValueSpec": { # The value spec for a 'DOUBLE' parameter. "maxValue": 3.14, # Must be specified if type is `DOUBLE`. Maximum value of the parameter. "minValue": 3.14, # Must be specified if type is `DOUBLE`. Minimum value of the parameter. }, "parameter": "A String", # Required. The parameter name must be unique amongst all ParameterSpecs. "type": "A String", # Required. The type of the parameter. "scaleType": "A String", # How the parameter should be scaled. # Leave unset for categorical parameters. }, ], "algorithm": "A String", # The search algorithm specified for the study. }, "createTime": "A String", # Output only. Time at which the study was created. }
list(parent=None, x__xgafv=None)
Lists all the studies in a region for an associated project. Args: parent: string, Required. The project and location that the study belongs to. Format: projects/{project}/locations/{location} (required) x__xgafv: string, V1 error format. Allowed values 1 - v1 error format 2 - v2 error format Returns: An object of the form: { "studies": [ # The studies associated with the project. { # A message representing a Study. "inactiveReason": "A String", # Output only. A human readable reason why the Study is inactive. # This should be empty if a study is ACTIVE or COMPLETED. "state": "A String", # Output only. The detailed state of a study. "name": "A String", # Output only. The name of a study. "studyConfig": { # Represents configuration of a study. # Required. Configuration of the study. "metrics": [ # Metric specs for the study. { # Represents a metric to optimize. "metric": "A String", # Required. The name of the metric. "goal": "A String", # Required. The optimization goal of the metric. }, ], "automatedStoppingConfig": { # Configuration for Automated Early Stopping of Trials. If no # Configuration for automated stopping of unpromising Trials. # implementation_config is set, automated early stopping will not be run. "decayCurveStoppingConfig": { "useElapsedTime": True or False, # If true, measurement.elapsed_time is used as the x-axis of each # Trials Decay Curve. Otherwise, Measurement.steps will be used as the # x-axis. }, "medianAutomatedStoppingConfig": { # The median automated stopping rule stops a pending trial if the trial's # best objective_value is strictly below the median 'performance' of all # completed trials reported up to the trial's last measurement. # Currently, 'performance' refers to the running average of the objective # values reported by the trial in each measurement. "useElapsedTime": True or False, # If true, the median automated stopping rule applies to # measurement.use_elapsed_time, which means the elapsed_time field of # the current trial's # latest measurement is used to compute the median objective # value for each completed trial. }, }, "parameters": [ # Required. The set of parameters to tune. { # Represents a single parameter to optimize. "discreteValueSpec": { # The value spec for a 'DISCRETE' parameter. "values": [ # Must be specified if type is `DISCRETE`. # A list of feasible points. # The list should be in strictly increasing order. For instance, this # parameter might have possible settings of 1.5, 2.5, and 4.0. This list # should not contain more than 1,000 values. 3.14, ], }, "categoricalValueSpec": { # The value spec for a 'CATEGORICAL' parameter. "values": [ # Must be specified if type is `CATEGORICAL`. # The list of possible categories. "A String", ], }, "parentCategoricalValues": { # Represents the spec to match categorical values from parent parameter. "values": [ # Matches values of the parent parameter with type 'CATEGORICAL'. # All values must exist in `categorical_value_spec` of parent parameter. "A String", ], }, "integerValueSpec": { # The value spec for an 'INTEGER' parameter. "maxValue": "A String", # Must be specified if type is `INTEGER`. Maximum value of the parameter. "minValue": "A String", # Must be specified if type is `INTEGER`. Minimum value of the parameter. }, "parentIntValues": { # Represents the spec to match integer values from parent parameter. "values": [ # Matches values of the parent parameter with type 'INTEGER'. # All values must lie in `integer_value_spec` of parent parameter. "A String", ], }, "parentDiscreteValues": { # Represents the spec to match discrete values from parent parameter. "values": [ # Matches values of the parent parameter with type 'DISCRETE'. # All values must exist in `discrete_value_spec` of parent parameter. 3.14, ], }, "childParameterSpecs": [ # A child node is active if the parameter's value matches the child node's # matching_parent_values. # # If two items in child_parameter_specs have the same name, they must have # disjoint matching_parent_values. # Object with schema name: GoogleCloudMlV1_StudyConfig_ParameterSpec ], "doubleValueSpec": { # The value spec for a 'DOUBLE' parameter. "maxValue": 3.14, # Must be specified if type is `DOUBLE`. Maximum value of the parameter. "minValue": 3.14, # Must be specified if type is `DOUBLE`. Minimum value of the parameter. }, "parameter": "A String", # Required. The parameter name must be unique amongst all ParameterSpecs. "type": "A String", # Required. The type of the parameter. "scaleType": "A String", # How the parameter should be scaled. # Leave unset for categorical parameters. }, ], "algorithm": "A String", # The search algorithm specified for the study. }, "createTime": "A String", # Output only. Time at which the study was created. }, ], }