#include <binary_confusion_matrix.h>
Confusion matrix for binary classification models.
◆ BinaryConfusionMatrix() [1/2]
| google_bigquery_api::BinaryConfusionMatrix::BinaryConfusionMatrix |
( |
const Json::Value & |
storage | ) |
|
|
explicit |
Standard constructor for an immutable data object instance.
- Parameters
-
| [in] | storage | The underlying data storage for this instance. |
◆ BinaryConfusionMatrix() [2/2]
| google_bigquery_api::BinaryConfusionMatrix::BinaryConfusionMatrix |
( |
Json::Value * |
storage | ) |
|
|
explicit |
Standard constructor for a mutable data object instance.
- Parameters
-
| [in] | storage | The underlying data storage for this instance. |
◆ ~BinaryConfusionMatrix()
| google_bigquery_api::BinaryConfusionMatrix::~BinaryConfusionMatrix |
( |
| ) |
|
|
virtual |
◆ clear_accuracy()
| void google_bigquery_api::BinaryConfusionMatrix::clear_accuracy |
( |
| ) |
|
|
inline |
Clears the 'accuracy' attribute.
◆ clear_f1_score()
| void google_bigquery_api::BinaryConfusionMatrix::clear_f1_score |
( |
| ) |
|
|
inline |
Clears the 'f1Score' attribute.
◆ clear_false_negatives()
| void google_bigquery_api::BinaryConfusionMatrix::clear_false_negatives |
( |
| ) |
|
|
inline |
Clears the 'falseNegatives' attribute.
◆ clear_false_positives()
| void google_bigquery_api::BinaryConfusionMatrix::clear_false_positives |
( |
| ) |
|
|
inline |
Clears the 'falsePositives' attribute.
◆ clear_positive_class_threshold()
| void google_bigquery_api::BinaryConfusionMatrix::clear_positive_class_threshold |
( |
| ) |
|
|
inline |
Clears the 'positiveClassThreshold' attribute.
◆ clear_precision()
| void google_bigquery_api::BinaryConfusionMatrix::clear_precision |
( |
| ) |
|
|
inline |
Clears the 'precision' attribute.
◆ clear_recall()
| void google_bigquery_api::BinaryConfusionMatrix::clear_recall |
( |
| ) |
|
|
inline |
Clears the 'recall' attribute.
◆ clear_true_negatives()
| void google_bigquery_api::BinaryConfusionMatrix::clear_true_negatives |
( |
| ) |
|
|
inline |
Clears the 'trueNegatives' attribute.
◆ clear_true_positives()
| void google_bigquery_api::BinaryConfusionMatrix::clear_true_positives |
( |
| ) |
|
|
inline |
Clears the 'truePositives' attribute.
◆ get_accuracy()
| double google_bigquery_api::BinaryConfusionMatrix::get_accuracy |
( |
| ) |
const |
|
inline |
Get the value of the 'accuracy' attribute.
◆ get_f1_score()
| double google_bigquery_api::BinaryConfusionMatrix::get_f1_score |
( |
| ) |
const |
|
inline |
Get the value of the 'f1Score' attribute.
◆ get_false_negatives()
| int64 google_bigquery_api::BinaryConfusionMatrix::get_false_negatives |
( |
| ) |
const |
|
inline |
Get the value of the 'falseNegatives' attribute.
◆ get_false_positives()
| int64 google_bigquery_api::BinaryConfusionMatrix::get_false_positives |
( |
| ) |
const |
|
inline |
Get the value of the 'falsePositives' attribute.
◆ get_positive_class_threshold()
| double google_bigquery_api::BinaryConfusionMatrix::get_positive_class_threshold |
( |
| ) |
const |
|
inline |
Get the value of the 'positiveClassThreshold' attribute.
◆ get_precision()
| double google_bigquery_api::BinaryConfusionMatrix::get_precision |
( |
| ) |
const |
|
inline |
Get the value of the 'precision' attribute.
◆ get_recall()
| double google_bigquery_api::BinaryConfusionMatrix::get_recall |
( |
| ) |
const |
|
inline |
Get the value of the 'recall' attribute.
◆ get_true_negatives()
| int64 google_bigquery_api::BinaryConfusionMatrix::get_true_negatives |
( |
| ) |
const |
|
inline |
Get the value of the 'trueNegatives' attribute.
◆ get_true_positives()
| int64 google_bigquery_api::BinaryConfusionMatrix::get_true_positives |
( |
| ) |
const |
|
inline |
Get the value of the 'truePositives' attribute.
◆ GetTypeName()
| const StringPiece google_bigquery_api::BinaryConfusionMatrix::GetTypeName |
( |
| ) |
const |
|
inline |
◆ has_accuracy()
| bool google_bigquery_api::BinaryConfusionMatrix::has_accuracy |
( |
| ) |
const |
|
inline |
Determine if the 'accuracy' attribute was set.
- Returns
- true if the '
accuracy' attribute was set.
◆ has_f1_score()
| bool google_bigquery_api::BinaryConfusionMatrix::has_f1_score |
( |
| ) |
const |
|
inline |
Determine if the 'f1Score' attribute was set.
- Returns
- true if the '
f1Score' attribute was set.
◆ has_false_negatives()
| bool google_bigquery_api::BinaryConfusionMatrix::has_false_negatives |
( |
| ) |
const |
|
inline |
Determine if the 'falseNegatives' attribute was set.
- Returns
- true if the '
falseNegatives' attribute was set.
◆ has_false_positives()
| bool google_bigquery_api::BinaryConfusionMatrix::has_false_positives |
( |
| ) |
const |
|
inline |
Determine if the 'falsePositives' attribute was set.
- Returns
- true if the '
falsePositives' attribute was set.
◆ has_positive_class_threshold()
| bool google_bigquery_api::BinaryConfusionMatrix::has_positive_class_threshold |
( |
| ) |
const |
|
inline |
Determine if the 'positiveClassThreshold' attribute was set.
- Returns
- true if the '
positiveClassThreshold' attribute was set.
◆ has_precision()
| bool google_bigquery_api::BinaryConfusionMatrix::has_precision |
( |
| ) |
const |
|
inline |
Determine if the 'precision' attribute was set.
- Returns
- true if the '
precision' attribute was set.
◆ has_recall()
| bool google_bigquery_api::BinaryConfusionMatrix::has_recall |
( |
| ) |
const |
|
inline |
Determine if the 'recall' attribute was set.
- Returns
- true if the '
recall' attribute was set.
◆ has_true_negatives()
| bool google_bigquery_api::BinaryConfusionMatrix::has_true_negatives |
( |
| ) |
const |
|
inline |
Determine if the 'trueNegatives' attribute was set.
- Returns
- true if the '
trueNegatives' attribute was set.
◆ has_true_positives()
| bool google_bigquery_api::BinaryConfusionMatrix::has_true_positives |
( |
| ) |
const |
|
inline |
Determine if the 'truePositives' attribute was set.
- Returns
- true if the '
truePositives' attribute was set.
◆ New()
Creates a new default instance.
- Returns
- Ownership is passed back to the caller.
◆ set_accuracy()
| void google_bigquery_api::BinaryConfusionMatrix::set_accuracy |
( |
double |
value | ) |
|
|
inline |
Change the 'accuracy' attribute.
The fraction of predictions given the correct label.
- Parameters
-
◆ set_f1_score()
| void google_bigquery_api::BinaryConfusionMatrix::set_f1_score |
( |
double |
value | ) |
|
|
inline |
Change the 'f1Score' attribute.
The equally weighted average of recall and precision.
- Parameters
-
◆ set_false_negatives()
| void google_bigquery_api::BinaryConfusionMatrix::set_false_negatives |
( |
int64 |
value | ) |
|
|
inline |
Change the 'falseNegatives' attribute.
Number of false samples predicted as false.
- Parameters
-
◆ set_false_positives()
| void google_bigquery_api::BinaryConfusionMatrix::set_false_positives |
( |
int64 |
value | ) |
|
|
inline |
Change the 'falsePositives' attribute.
Number of false samples predicted as true.
- Parameters
-
◆ set_positive_class_threshold()
| void google_bigquery_api::BinaryConfusionMatrix::set_positive_class_threshold |
( |
double |
value | ) |
|
|
inline |
Change the 'positiveClassThreshold' attribute.
Threshold value used when computing each of the following metric.
- Parameters
-
◆ set_precision()
| void google_bigquery_api::BinaryConfusionMatrix::set_precision |
( |
double |
value | ) |
|
|
inline |
Change the 'precision' attribute.
The fraction of actual positive predictions that had positive actual labels.
- Parameters
-
◆ set_recall()
| void google_bigquery_api::BinaryConfusionMatrix::set_recall |
( |
double |
value | ) |
|
|
inline |
Change the 'recall' attribute.
The fraction of actual positive labels that were given a positive prediction.
- Parameters
-
◆ set_true_negatives()
| void google_bigquery_api::BinaryConfusionMatrix::set_true_negatives |
( |
int64 |
value | ) |
|
|
inline |
Change the 'trueNegatives' attribute.
Number of true samples predicted as false.
- Parameters
-
◆ set_true_positives()
| void google_bigquery_api::BinaryConfusionMatrix::set_true_positives |
( |
int64 |
value | ) |
|
|
inline |
Change the 'truePositives' attribute.
Number of true samples predicted as true.
- Parameters
-
The documentation for this class was generated from the following files: