bigquery  v2
Public Member Functions | Static Public Member Functions | List of all members
google_bigquery_api::AggregateClassificationMetrics Class Reference

#include <aggregate_classification_metrics.h>

Inheritance diagram for google_bigquery_api::AggregateClassificationMetrics:

Public Member Functions

 AggregateClassificationMetrics (const Json::Value &storage)
 
 AggregateClassificationMetrics (Json::Value *storage)
 
virtual ~AggregateClassificationMetrics ()
 
const StringPiece GetTypeName () const
 
bool has_accuracy () const
 
void clear_accuracy ()
 
double get_accuracy () const
 
void set_accuracy (double value)
 
bool has_f1_score () const
 
void clear_f1_score ()
 
double get_f1_score () const
 
void set_f1_score (double value)
 
bool has_log_loss () const
 
void clear_log_loss ()
 
double get_log_loss () const
 
void set_log_loss (double value)
 
bool has_precision () const
 
void clear_precision ()
 
double get_precision () const
 
void set_precision (double value)
 
bool has_recall () const
 
void clear_recall ()
 
double get_recall () const
 
void set_recall (double value)
 
bool has_roc_auc () const
 
void clear_roc_auc ()
 
double get_roc_auc () const
 
void set_roc_auc (double value)
 
bool has_threshold () const
 
void clear_threshold ()
 
double get_threshold () const
 
void set_threshold (double value)
 

Static Public Member Functions

static AggregateClassificationMetricsNew ()
 

Detailed Description

Aggregate metrics for classification/classifier models. For multi-class models, the metrics are either macro-averaged or micro-averaged. When macro-averaged, the metrics are calculated for each label and then an unweighted average is taken of those values. When micro-averaged, the metric is calculated globally by counting the total number of correctly predicted rows.

Constructor & Destructor Documentation

◆ AggregateClassificationMetrics() [1/2]

google_bigquery_api::AggregateClassificationMetrics::AggregateClassificationMetrics ( const Json::Value &  storage)
explicit

Standard constructor for an immutable data object instance.

Parameters
[in]storageThe underlying data storage for this instance.

◆ AggregateClassificationMetrics() [2/2]

google_bigquery_api::AggregateClassificationMetrics::AggregateClassificationMetrics ( Json::Value *  storage)
explicit

Standard constructor for a mutable data object instance.

Parameters
[in]storageThe underlying data storage for this instance.

◆ ~AggregateClassificationMetrics()

google_bigquery_api::AggregateClassificationMetrics::~AggregateClassificationMetrics ( )
virtual

Standard destructor.

Member Function Documentation

◆ clear_accuracy()

void google_bigquery_api::AggregateClassificationMetrics::clear_accuracy ( )
inline

Clears the 'accuracy' attribute.

◆ clear_f1_score()

void google_bigquery_api::AggregateClassificationMetrics::clear_f1_score ( )
inline

Clears the 'f1Score' attribute.

◆ clear_log_loss()

void google_bigquery_api::AggregateClassificationMetrics::clear_log_loss ( )
inline

Clears the 'logLoss' attribute.

◆ clear_precision()

void google_bigquery_api::AggregateClassificationMetrics::clear_precision ( )
inline

Clears the 'precision' attribute.

◆ clear_recall()

void google_bigquery_api::AggregateClassificationMetrics::clear_recall ( )
inline

Clears the 'recall' attribute.

◆ clear_roc_auc()

void google_bigquery_api::AggregateClassificationMetrics::clear_roc_auc ( )
inline

Clears the 'rocAuc' attribute.

◆ clear_threshold()

void google_bigquery_api::AggregateClassificationMetrics::clear_threshold ( )
inline

Clears the 'threshold' attribute.

◆ get_accuracy()

double google_bigquery_api::AggregateClassificationMetrics::get_accuracy ( ) const
inline

Get the value of the 'accuracy' attribute.

◆ get_f1_score()

double google_bigquery_api::AggregateClassificationMetrics::get_f1_score ( ) const
inline

Get the value of the 'f1Score' attribute.

◆ get_log_loss()

double google_bigquery_api::AggregateClassificationMetrics::get_log_loss ( ) const
inline

Get the value of the 'logLoss' attribute.

◆ get_precision()

double google_bigquery_api::AggregateClassificationMetrics::get_precision ( ) const
inline

Get the value of the 'precision' attribute.

◆ get_recall()

double google_bigquery_api::AggregateClassificationMetrics::get_recall ( ) const
inline

Get the value of the 'recall' attribute.

◆ get_roc_auc()

double google_bigquery_api::AggregateClassificationMetrics::get_roc_auc ( ) const
inline

Get the value of the 'rocAuc' attribute.

◆ get_threshold()

double google_bigquery_api::AggregateClassificationMetrics::get_threshold ( ) const
inline

Get the value of the 'threshold' attribute.

◆ GetTypeName()

const StringPiece google_bigquery_api::AggregateClassificationMetrics::GetTypeName ( ) const
inline

Returns a string denoting the type of this data object.

Returns
google_bigquery_api::AggregateClassificationMetrics

◆ has_accuracy()

bool google_bigquery_api::AggregateClassificationMetrics::has_accuracy ( ) const
inline

Determine if the 'accuracy' attribute was set.

Returns
true if the 'accuracy' attribute was set.

◆ has_f1_score()

bool google_bigquery_api::AggregateClassificationMetrics::has_f1_score ( ) const
inline

Determine if the 'f1Score' attribute was set.

Returns
true if the 'f1Score' attribute was set.

◆ has_log_loss()

bool google_bigquery_api::AggregateClassificationMetrics::has_log_loss ( ) const
inline

Determine if the 'logLoss' attribute was set.

Returns
true if the 'logLoss' attribute was set.

◆ has_precision()

bool google_bigquery_api::AggregateClassificationMetrics::has_precision ( ) const
inline

Determine if the 'precision' attribute was set.

Returns
true if the 'precision' attribute was set.

◆ has_recall()

bool google_bigquery_api::AggregateClassificationMetrics::has_recall ( ) const
inline

Determine if the 'recall' attribute was set.

Returns
true if the 'recall' attribute was set.

◆ has_roc_auc()

bool google_bigquery_api::AggregateClassificationMetrics::has_roc_auc ( ) const
inline

Determine if the 'rocAuc' attribute was set.

Returns
true if the 'rocAuc' attribute was set.

◆ has_threshold()

bool google_bigquery_api::AggregateClassificationMetrics::has_threshold ( ) const
inline

Determine if the 'threshold' attribute was set.

Returns
true if the 'threshold' attribute was set.

◆ New()

AggregateClassificationMetrics * google_bigquery_api::AggregateClassificationMetrics::New ( )
static

Creates a new default instance.

Returns
Ownership is passed back to the caller.

◆ set_accuracy()

void google_bigquery_api::AggregateClassificationMetrics::set_accuracy ( double  value)
inline

Change the 'accuracy' attribute.

Accuracy is the fraction of predictions given the correct label. For multiclass this is a micro-averaged metric.

Parameters
[in]valueThe new value.

◆ set_f1_score()

void google_bigquery_api::AggregateClassificationMetrics::set_f1_score ( double  value)
inline

Change the 'f1Score' attribute.

The F1 score is an average of recall and precision. For multiclass this is a macro-averaged metric.

Parameters
[in]valueThe new value.

◆ set_log_loss()

void google_bigquery_api::AggregateClassificationMetrics::set_log_loss ( double  value)
inline

Change the 'logLoss' attribute.

Logarithmic Loss. For multiclass this is a macro-averaged metric.

Parameters
[in]valueThe new value.

◆ set_precision()

void google_bigquery_api::AggregateClassificationMetrics::set_precision ( double  value)
inline

Change the 'precision' attribute.

Precision is the fraction of actual positive predictions that had positive actual labels. For multiclass this is a macro-averaged metric treating each class as a binary classifier.

Parameters
[in]valueThe new value.

◆ set_recall()

void google_bigquery_api::AggregateClassificationMetrics::set_recall ( double  value)
inline

Change the 'recall' attribute.

Recall is the fraction of actual positive labels that were given a positive prediction. For multiclass this is a macro-averaged metric.

Parameters
[in]valueThe new value.

◆ set_roc_auc()

void google_bigquery_api::AggregateClassificationMetrics::set_roc_auc ( double  value)
inline

Change the 'rocAuc' attribute.

Area Under a ROC Curve. For multiclass this is a macro-averaged metric.

Parameters
[in]valueThe new value.

◆ set_threshold()

void google_bigquery_api::AggregateClassificationMetrics::set_threshold ( double  value)
inline

Change the 'threshold' attribute.

Threshold at which the metrics are computed. For binary classification models this is the positive class threshold. For multi-class classfication models this is the confidence threshold.

Parameters
[in]valueThe new value.

The documentation for this class was generated from the following files: