這些查詢範例需要用到 SQL 和 BigQuery 的實務知識。進一步瞭解 BigQuery 中的 SQL。
Campaign Manager 360 資料移轉查詢
將 Floodlight 變數與暫存資料表進行比對
在活動資料表中比對 user_id 與 Floodlight 自訂變數,來彙整第一方資料與 Campaign Manager 360 資料。
/* Creating the match temp table. This can be a separate query and the
temporary table will persist for 72 hours. */
CREATE TABLE
temp_table AS (
SELECT
user_id,
REGEXP_EXTRACT(event.other_data, 'u1=([^;]*)') AS u1_val
FROM
adh.cm_dt_activities_attributed
GROUP BY
1,
2 )
/* Matching to Campaign Manager 360 impression data */
SELECT
imp.event.campaign_id,
temp.u1_val,
COUNT(*) AS cnt
FROM
adh.cm_dt_impressions AS imp
JOIN
tmp.temp_table AS temp USING (user_id)
GROUP BY
1,
2
曝光放送
本例適合做為管理曝光時的參考,可從中看出如何查看超出展示頻率上限的曝光次數,或是廣告向特定潛在客戶曝光的次數是否不足。您可以運用這些知識改善網站和策略,對選定的目標對象適量曝光。
/* For this query to run, @advertiser_ids and @campaigns_ids
must be replaced with actual IDs. For example [12345] */
WITH filtered_uniques AS (
SELECT
user_id,
COUNT(event.placement_id) AS frequency
FROM adh.cm_dt_impressions
WHERE user_id != '0'
AND event.advertiser_id IN UNNEST(@advertiser_ids)
AND event.campaign_id IN UNNEST(@campaign_ids)
AND event.country_domain_name = 'US'
GROUP BY user_id
)
SELECT
frequency,
COUNT(*) AS uniques
FROM filtered_uniques
GROUP BY frequency
ORDER BY frequency
;
不重複 Cookie 總數/頻率
本例有助於您確認哪些策略和廣告格式,會影響不重複 Cookie 的數量或頻率。
/* For this query to run, @advertiser_ids and @campaigns_ids and @placement_ids
must be replaced with actual IDs. For example [12345] */
SELECT
COUNT(DISTINCT user_id) AS total_users,
COUNT(DISTINCT event.site_id) AS total_sites,
COUNT(DISTINCT device_id_md5) AS total_devices,
COUNT(event.placement_id) AS impressions
FROM adh.cm_dt_impressions
WHERE user_id != '0'
AND event.advertiser_id IN UNNEST(@advertiser_ids)
AND event.campaign_id IN UNNEST(@campaign_ids)
AND event.placement_id IN UNNEST(@placement_ids)
AND event.country_domain_name = 'US'
;
此外,您也可以在 WHERE 子句中加入網站或刊登位置 ID,縮小查詢範圍。
不重複 Cookie 總數和平均頻率 (按州/省劃分)
本例彙整 cm_dt_impressions
資料表和 cm_dt_state
中繼資料表,顯示曝光總數、各州/省的 Cookie 數量,以及每位使用者的平均曝光次數 (按北美地區的州/省分類)。
WITH impression_stats AS (
SELECT
event.country_domain_name AS country,
CONCAT(event.country_domain_name, '-', event.state) AS state,
COUNT(DISTINCT user_id) AS users,
COUNT(*) AS impressions
FROM adh.cm_dt_impressions
WHERE event.country_domain_name = 'US'
OR event.country_domain_name = 'CA'
GROUP BY 1, 2
)
SELECT
country,
IFNULL(state_name, state) AS state_name,
users,
impressions,
FORMAT(
'%0.2f',
IF(
IFNULL(impressions, 0) = 0,
0,
impressions / users
)
) AS avg_imps_per_user
FROM impression_stats
LEFT JOIN adh.cm_dt_state USING (state)
;
Display & Video 360 目標對象
本例顯示如何分析 Display & Video 360 目標對象,協助您瞭解達到的目標對象曝光次數,並判斷某些目標對象的成效是否優於其他目標對象。視您的目標而定,這項資訊有助於在不重複 Cookie 數量 (向大量使用者顯示廣告) 和品質 (縮減指定目標範圍和可視曝光次數) 之間取得平衡。
/* For this query to run, @advertiser_ids and @campaigns_ids and @placement_ids
must be replaced with actual IDs. For example [12345] */
WITH filtered_impressions AS (
SELECT
event.event_time as date,
CASE
WHEN (event.browser_enum IN ('29', '30', '31')
OR event.os_id IN
(501012, 501013, 501017, 501018,
501019, 501020, 501021, 501022,
501023, 501024, 501025, 501027))
THEN 'Mobile'
ELSE 'Desktop'
END AS device,
event.dv360_matching_targeted_segments,
event.active_view_viewable_impressions,
event.active_view_measurable_impressions,
user_id
FROM adh.cm_dt_impressions
WHERE event.dv360_matching_targeted_segments != ''
AND event.advertiser_id in UNNEST(@advertiser_ids)
AND event.campaign_id IN UNNEST(@campaign_ids)
AND event.dv360_country_code = 'US'
)
SELECT
audience_id,
device,
COUNT(*) AS impressions,
COUNT(DISTINCT user_id) AS uniques,
ROUND(COUNT(*) / COUNT(DISTINCT user_id), 1) AS frequency,
SUM(active_view_viewable_impressions) AS viewable_impressions,
SUM(active_view_measurable_impressions) AS measurable_impressions
FROM filtered_impressions
JOIN UNNEST(SPLIT(dv360_matching_targeted_segments, ' ')) AS audience_id
GROUP BY 1, 2
;
可視度
本例顯示如何評估 Active View Plus 可視度指標。
WITH T AS (
SELECT cm_dt_impressions.event.impression_id AS Impression,
cm_dt_impressions.event.active_view_measurable_impressions AS AV_Measurable,
SUM(cm_dt_active_view_plus.event.active_view_plus_measurable_count) AS AVP_Measurable
FROM adh.cm_dt_impressions
FULL JOIN adh.cm_dt_active_view_plus
ON (cm_dt_impressions.event.impression_id =
cm_dt_active_view_plus.event.impression_id)
GROUP BY Impression, AV_Measurable
)
SELECT COUNT(Impression), SUM(AV_Measurable), SUM(AVP_Measurable)
FROM T
;
WITH Raw AS (
SELECT
event.ad_id AS Ad_Id,
SUM(event.active_view_plus_measurable_count) AS avp_total,
SUM(event.active_view_first_quartile_viewable_impressions) AS avp_1st_quartile,
SUM(event.active_view_midpoint_viewable_impressions) AS avp_2nd_quartile,
SUM(event.active_view_third_quartile_viewable_impressions) AS avp_3rd_quartile,
SUM(event.active_view_complete_viewable_impressions) AS avp_complete
FROM
adh.cm_dt_active_view_plus
GROUP BY
1
)
SELECT
Ad_Id,
avp_1st_quartile / avp_total AS Viewable_Rate_1st_Quartile,
avp_2nd_quartile / avp_total AS Viewable_Rate_2nd_Quartile,
avp_3rd_quartile / avp_total AS Viewable_Rate_3rd_Quartile,
avp_complete / avp_total AS Viewable_Rate_Completion_Quartile
FROM
Raw
WHERE
avp_total > 0
ORDER BY
Viewable_Rate_1st_Quartile DESC
;
Campaign Manager 360 資料移轉中的動態資料
每個動態設定檔和動態饋給的曝光次數
SELECT
event.dynamic_profile,
feed_name,
COUNT(*) as impressions
FROM adh.cm_dt_impressions
JOIN UNNEST (event.feed) as feed_name
GROUP BY 1, 2;
動態饋給 1 中每個動態報表標籤的曝光次數
SELECT
event.feed_reporting_label[SAFE_ORDINAL(1)] feed1_reporting_label,,
COUNT(*) as impressions
FROM adh.cm_dt_impressions
WHERE event.feed_reporting_label[SAFE_ORDINAL(1)] <> “” # where you have at least one reporting label set
GROUP BY 1;
動態饋給 2 中報表標籤為「紅色」的曝光次數
SELECT
event.feed_reporting_label[SAFE_ORDINAL(2)] AS feed1_reporting_label,
COUNT(*) as impressions
FROM adh.cm_dt_impressions
WHERE event.feed_reporting_label[SAFE_ORDINAL(2)] = “red”
GROUP BY 1;
動態饋給 1 中報表維度 1 為「紅色」,且報表維度 2 為「汽車」的曝光次數
SELECT
event.feed_reporting_label[SAFE_ORDINAL(1)] AS feed1_reporting_label,
event.feed_reporting_dimension1[SAFE_ORDINAL(1)] AS feed1_reporting_dimension1,
event.feed_reporting_dimension2[SAFE_ORDINAL(1)] AS feed2_reporting_dimension1,
event.feed_reporting_dimension3[SAFE_ORDINAL(1)] AS feed3_reporting_dimension1,
event.feed_reporting_dimension4[SAFE_ORDINAL(1)] AS feed4_reporting_dimension1,
event.feed_reporting_dimension5[SAFE_ORDINAL(1)] AS feed5_reporting_dimension1,
event.feed_reporting_dimension6[SAFE_ORDINAL(1)] AS feed6_reporting_dimension1,
COUNT(*) as impressions
FROM adh.cm_dt_impressions
WHERE event.feed_reporting_dimension1[SAFE_ORDINAL(1)] = “red”
AND event.feed_reporting_dimension2[SAFE_ORDINAL(1)] = “car”
GROUP BY 1,2,3,4,5,6,7;
Campaign Manager 360 資料移轉中的廣告格式
這些範例顯示如何判斷哪些廣告格式能提高不重複 Cookie 數量或曝光頻率。您可以運用這項知識,在不重複 Cookie 總數和使用者看到廣告的次數之間取得平衡。
曝光放送
/* For this query to run, @advertiser_ids and @campaigns_ids
must be replaced with actual IDs. For example [12345]. YOUR_BQ_DATASET must be
replaced with the actual name of your dataset.*/
WITH filtered_uniques AS (
SELECT
user_id,
CASE
WHEN creative_type LIKE '%Video%' THEN 'Video'
WHEN creative_type IS NULL THEN 'Unknown'
ELSE 'Display'
END AS creative_format,
COUNT(*) AS impressions
FROM adh.cm_dt_impressions impression
LEFT JOIN YOUR_BQ_DATASET.campaigns creative
ON creative.rendering_id = impression.event.rendering_id
WHERE user_id != '0'
AND event.advertiser_id IN UNNEST(@advertiser_ids)
AND event.campaign_id IN UNNEST(@campaign_ids)
AND event.country_domain_name = 'US'
GROUP BY user_id, creative_format
)
SELECT
impressions AS frequency,
creative_format,
COUNT(DISTINCT user_id) AS uniques,
SUM(impressions) AS impressions
FROM filtered_uniques
GROUP BY frequency, creative_format
ORDER BY frequency
;
不重複 Cookie 數量和頻率
/* For this query to run, @advertiser_ids and @campaigns_ids
must be replaced with actual IDs. For example [12345]. YOUR_BQ_DATASET must be
replaced with the actual name of your dataset. */
WITH filtered_impressions AS (
SELECT
event.campaign_id AS campaign_id,
event.rendering_id AS rendering_id,
user_id
FROM adh.cm_dt_impressions
WHERE user_id != '0'
AND event.advertiser_id IN UNNEST(@advertiser_ids)
AND event.campaign_id IN UNNEST(@campaign_ids)
AND event.country_domain_name = 'US'
)
SELECT
Campaign,
CASE
WHEN creative_type LIKE '%Video%' THEN 'Video'
WHEN creative_type IS NULL THEN 'Unknown'
ELSE 'Display'
END AS creative_format,
COUNT(DISTINCT user_id) AS users,
COUNT(*) AS impressions
FROM filtered_impressions
LEFT JOIN YOUR_BQ_DATASET.campaigns USING (campaign_id)
LEFT JOIN YOUR_BQ_DATASET.creatives USING (rendering_id)
GROUP BY 1, 2
;
Google Ads
行動應用程式曝光和 _rdid 資料表
查詢 1:
SELECT
campaign_id,
COUNT(*) AS imp,
COUNT(DISTINCT user_id) AS users
FROM adh.google_ads_impressions
WHERE is_app_traffic
GROUP BY 1
;
查詢 2:
SELECT
campaign_id,
COUNT(DISTINCT device_id_md5) AS device_ids
FROM adh.google_ads_impressions_rdid
GROUP BY 1
;
您可以使用 campaign_id 彙整結果。
客層放送
本例顯示如何判斷哪些廣告活動能觸及特定客層。
/* For this query to run, @customer_id
must be replaced with an actual ID. For example [12345] */
WITH impression_stats AS (
SELECT
campaign_id,
demographics.gender AS gender_id,
demographics.age_group AS age_group_id,
COUNT(DISTINCT user_id) AS users,
COUNT(*) AS impressions
FROM adh.google_ads_impressions
WHERE customer_id = @customer_id
GROUP BY 1, 2, 3
)
SELECT
campaign_name,
gender_name,
age_group_name,
users,
impressions
FROM impression_stats
LEFT JOIN adh.google_ads_campaign USING (campaign_id)
LEFT JOIN adh.gender USING (gender_id)
LEFT JOIN adh.age_group USING (age_group_id)
ORDER BY 1, 2, 3
;
可視度
如需可視度總覽和查詢範例,請參閱「進階 Active View 指標」一文
Google Ads 廣告客戶時區設定
SELECT
customer_id,
customer_timezone,
count(1) as impressions
FROM adh.google_ads_impressions i
INNER JOIN adh.google_ads_customer c
ON c.customer_id = i.customer_id
WHERE TIMESTAMP_MICROS(i.query_id.time_usec) >= CAST(DATETIME(@date, c.customer_timezone) AS TIMESTAMP)
AND TIMESTAMP_MICROS(i.query_id.time_usec) < CAST(DATETIME_ADD(DATETIME(@date, c.customer_timezone), INTERVAL 1 DAY) AS TIMESTAMP)
GROUP BY customer_id, customer_timezone
廣告空間類型
這個查詢範例展示廣告空間類型的概念。您可以使用 inventory_type
欄位決定要在哪些廣告空間放送廣告,例如 Gmail 或 YouTube Music。可能的值:YOUTUBE
、YOUTUBE_TV
、YOUTUBE_MUSIC
、SEARCH
、GMAIL
、OTHER
。「Other」(其他) 值是指 Google 多媒體廣告聯播網或影片聯播網。
SELECT
i.campaign_id,
cmp.campaign_name,
i.inventory_type,
COUNT(i.query_id.time_usec) AS impressions
FROM adh.google_ads_impressions i
LEFT JOIN adh.google_ads_campaign cmp ON (i.campaign_id = cmp.campaign_id)
WHERE
TIMESTAMP_MICROS(i.query_id.time_usec)
BETWEEN @local_start_date
AND TIMESTAMP_ADD(@local_start_date,INTERVAL @number_days*24 HOUR)
GROUP BY 1, 2, 3
ORDER BY 4 DESC
使用歸因模式
廣告資料中心支援 Google Ads 轉換資料表中的以數據為準歸因 (DDA) 和最終點擊歸因 (LCA) 模式。2023 年 9 月 19 日前,廣告資料中心只支援最終點擊歸因 (LCA) 模式。以下例子說明如何查看任一模式的轉換資料,以及如何使用轉換設定中繼資料表。
查看以數據為準歸因轉換
以下例子說明如何查看使用以數據為準歸因模式的轉換資料:
SELECT
s.name
SUM(conv.num_conversion_micros)/1000000 AS num_convs
FROM adh.google_ads_conversions AS conv
JOIN adh.google_ads_conversion_settings AS s
ON (conv.conversion_type = s.conversion_type_id)
WHERE s.action_optimization = 'Primary'
AND s.attribution_model = 'DATA_DRIVEN'
GROUP BY 1;
查看最終點擊歸因轉換
如要延續舊版行為,請在查詢中加入 WHERE
子句,從結果中篩選出最終點擊歸因轉換:
SELECT COUNT(*)
FROM adh.google_ads_conversions
WHERE conversion_type = 123
AND conversion_attribution_model_type = 'LAST_CLICK';
依轉換名稱篩選 (使用中繼資料表)
您可以使用轉換設定中繼資料表,根據有意義的名稱 (而非數字) 來篩選轉換。
舉例來說,如果您不想依據 conversion_type
篩選轉換:
SELECT COUNT(*)
FROM adh.google_ads_conversions
WHERE conversion_type = 291496508;
請使用 JOIN
子句,根據轉換設定中繼資料表中的欄位進行篩選:
SELECT SUM(num_conversion_micros)/1000000 AS num_convs
FROM adh.google_ads_conversions AS conv
JOIN adh.google_ads_conversion_settings AS s
ON (conv.conversion_type = s.conversion_type_id)
WHERE s.name = 'LTH Android Order';
SELECT s.name, SUM(conv.num_conversion_micros)/1000000 AS num_convs
FROM adh.google_ads_conversions AS conv
JOIN adh.google_ads_conversion_settings AS s
ON (conv.conversion_type = s.conversion_type_id)
WHERE s.conversion_category = 'PURCHASE'
AND s.action_optimization = 'Primary'
GROUP BY 1;
YouTube 廣告連播查詢
在較長的 YouTube 觀看時間中,廣告連播會將 2 則廣告分到一個廣告插播時間點 (也就是廣告時段,但最多只有 2 則廣告)。在廣告連播中放送的廣告仍可略過。不過,如果使用者略過第一則廣告,第二則廣告也會略過。
Google Ads TrueView 串流內廣告活動曝光和 TrueView 觀看
SELECT
cmp.campaign_name,
imp.is_app_traffic,
COUNT(*) AS total_impressions,
COUNTIF(clk.click_id IS NOT NULL) AS total_trueview_views
FROM adh.google_ads_impressions imp
JOIN adh.google_ads_campaign cmp USING (campaign_id)
JOIN adh.google_ads_adgroup adg USING (adgroup_id)
LEFT JOIN adh.google_ads_clicks clk ON
imp.impression_id = clk.impression_id
WHERE
imp.customer_id IN UNNEST(@customer_ids)
AND adg.adgroup_type = 'VIDEO_TRUE_VIEW_IN_STREAM'
AND cmp.advertising_channel_type = 'VIDEO'
GROUP BY 1, 2
Display & Video 360 可視度指標 (按委刊項劃分)
WITH
imp_stats AS (
SELECT
imp.line_item_id,
count(*) as total_imp,
SUM(num_active_view_measurable_impression) AS num_measurable_impressions,
SUM(num_active_view_eligible_impression) AS num_enabled_impressions
FROM adh.dv360_youtube_impressions imp
WHERE
imp.line_item_id IN UNNEST(@line_item_ids)
GROUP BY 1
),
av_stats AS (
SELECT
imp.line_item_id,
SUM(num_active_view_viewable_impression) AS num_viewable_impressions
FROM adh.dv360_youtube_impressions imp
LEFT JOIN
adh.dv360_youtube_active_views av
ON imp.impression_id = av.impression_id
WHERE
imp.line_item_id IN UNNEST(@line_item_ids)
GROUP BY 1
)
SELECT
li.line_item_name,
SUM(imp.total_imp) as num_impressions,
SUM(imp.num_measurable_impressions) AS num_measurable_impressions,
SUM(imp.num_enabled_impressions) AS num_enabled_impressions,
SUM(IFNULL(av.num_viewable_impressions, 0)) AS num_viewable_impressions
FROM imp_stats as imp
LEFT JOIN av_stats AS av USING (line_item_id)
JOIN adh.dv360_youtube_lineitem li ON (imp.line_item_id = li.line_item_id)
GROUP BY 1
YouTube Reserve 查詢
曝光放送 (按廣告客戶劃分)
這項查詢會評估每個廣告客戶的曝光次數和不重複使用者人數。您可以運用這些數據計算每位使用者的平均曝光次數 (又稱「廣告展示頻率」)。
SELECT
advertiser_name,
COUNT(*) AS imp,
COUNT(DISTINCT user_id) AS users
FROM adh.yt_reserve_impressions AS impressions
JOIN adh.yt_reserve_order order ON impressions.order_id = order.order_id
GROUP BY 1
;
廣告略過
這項查詢會評估每個客戶、廣告活動、廣告群組和廣告素材的廣告略過次數。
SELECT
impression_data.customer_id,
impression_data.campaign_id,
impression_data.adgroup_id,
impression_data.ad_group_creative_id,
COUNTIF(label = "videoskipped") AS num_skips
FROM
adh.google_ads_conversions
GROUP BY 1, 2, 3, 4;
一般查詢
將一組使用者從另一組使用者中減去
本例顯示如何將一組使用者從另一組使用者中減去。這項技巧的應用範圍廣泛,包括計算未轉換使用者、無可視曝光的使用者,以及無點擊的使用者。
WITH exclude AS (
SELECT DISTINCT user_id
FROM adh.google_ads_impressions
WHERE campaign_id = 123
)
SELECT
COUNT(DISTINCT imp.user_id) -
COUNT(DISTINCT exclude.user_id) AS users
FROM adh.google_ads_impressions imp
LEFT JOIN exclude
USING (user_id)
WHERE imp.campaign_id = 876
;
自訂重疊
這項查詢會評估 2 個以上廣告活動的重疊情況。您可以根據自行決定的條件自訂這項查詢,以評估重疊部分。
/* For this query to run, @campaign_1 and @campaign_2 must be replaced with
actual campaign IDs. */
WITH flagged_impressions AS (
SELECT
user_ID,
SUM(IF(campaign_ID in UNNEST(@campaign_1), 1, 0)) AS C1_impressions,
SUM(IF(campaign_ID in UNNEST(@campaign_2), 1, 0)) AS C2_impressions
FROM adh.cm_dt_impressions
GROUP BY user_ID
SELECT COUNTIF(C1_impressions > 0) as C1_cookie_count,
COUNTIF(C2_impressions > 0) as C2_cookie_count,
COUNTIF(C1_impressions > 0 and C2_impressions > 0) as overlap_cookie_count
FROM flagged_impressions
;
合作夥伴銷售 - 交叉銷售
這項查詢會評估合作夥伴銷售廣告空間的曝光次數和點閱次數。
SELECT
a.record_date AS record_date,
a.line_item_id AS line_item_id,
a.creative_id AS creative_id,
a.ad_id AS ad_id,
a.impressions AS impressions,
a.click_through AS click_through,
a.video_skipped AS video_skipped,
b.pixel_url AS pixel_url
FROM
(
SELECT
FORMAT_TIMESTAMP('%D', TIMESTAMP_MICROS(i.query_id.time_usec), 'Etc/UTC') AS record_date,
i.line_item_id as line_item_id,
i.creative_id as creative_id,
i.ad_id as ad_id,
COUNT(i.query_id) as impressions,
COUNTIF(c.label='video_click_to_advertiser_site') AS click_through,
COUNTIF(c.label='videoskipped') AS video_skipped
FROM
adh.partner_sold_cross_sell_impressions AS i
LEFT JOIN adh.partner_sold_cross_sell_conversions AS c
ON i.impression_id = c.impression_id
GROUP BY
1, 2, 3, 4
) AS a
JOIN adh.partner_sold_cross_sell_creative_pixels AS b
ON (a.ad_id = b.ad_id)
;
應用程式商店曝光
以下查詢會計算按應用程式商店和應用程式分類的曝光總數。
SELECT app_store_name, app_name, COUNT(*) AS number
FROM adh.google_ads_impressions AS imp
JOIN adh.mobile_app_info
USING (app_store_id, app_id)
WHERE imp.app_id IS NOT NULL
GROUP BY 1,2
ORDER BY 3 DESC