
Building Connected Apps
Overview

What can I expect? How difficult is this to build?

Principles

Permissions

FYI - product caveats

Getting Started

Overview

Custom profile-aware classes and methods

More Complex Examples

Testing

Hello World

Ensure that you have a test device with a work profile to test on

Ensure your application is configured appropriately

Add gradle dependencies

Create a new class that will contain your test cross-profile call

Make a cross-profile call

Provide the instance to the SDK

Additional wiring

Production Ready

Switch out the logic from the hello world example for your real cross-profile
logic

Refactor your logic to have an architecture that you could submit

Double-check privacy/security

Consider other best practices

Add tests

Consider permissions

Details

Requesting user consent

Glossary

Cross Profile Configuration

Profile Connector

Cross Profile Provider Class

Mediator

Cross Profile Type

Profile Types

Profile Identifier

Architectural Best Practices

Convert your CrossProfileConnector into a singleton

Inject/pass in the generated Profile instance into your class for when you
make the call, rather than creating it in the method

Consider the mediator pattern

Consider whether to annotate an interface method as @CrossProfile
instead to avoid having to expose your implementation classes in a
provider

If you are receiving any data from a cross-profile call, consider whether to
add a field referencing which profile it came from

Primary Profiles

Cross Profile Types

Class annotation

Interfaces

Cross Profile Providers

Constructor

Provider Methods

Dependency Injection

Profile Connector

Default Profile Connector

Scheduled Executor Service

Binder

Custom Profile Connector

serviceClassName

primaryProfile

availabilityRestrictions

Device Policy Controllers

Cross Profile Configuration

serviceSuperclass

serviceClass

Connector

Visibility

Synchronous Calls

Connection Holders

Connectivity

Asynchronous Calls

Callbacks

Synchronous methods with callbacks

Simple Callbacks

Connection Holders

Futures

Threads

Availability

Connection Holders

Synchronous calls

Asynchronous calls

Error Handling

Exceptions

ifAvailable

Testing

Types

Supported Types

Futures

Custom Parcelable Wrappers

Custom Future Wrappers

Parcelable Wrappers

Annotation

Format

Bundler

Registering with the SDK

Future Wrappers

Annotation

Format

Registering with the SDK

Direct Boot Mode

Overview

Connected apps is a framework-backed mechanism of giving your app access to
content in both work and personal profiles to display to users in a single user
interface.

What can I expect? How difficult is this to build?

The connected apps SDK makes it as easy as possible to perform and test
cross-profile behaviour or data access, once you have the appropriate
permission. Normally, the cross-profile calls themselves are quite
straightforward, so you should be able to estimate the complexity and
engineering cost from your specific product goals and other desired changes
within your app itself.

Principles

The general flow of data through your app should not change to accommodate
becoming connected. At a high-level, do not think "send a message to the other
profile to tell them that X" or "get data from the other profile to Y". Instead,
continue to think "get emails", "delete event", or "register listener". A device only
ever has one APK per package name, so each profile will always have an identical
version of the app. At a single point in each data flow stack, the connected apps
SDK can be used to route the call to the appropriate profile(s).

Permissions

Firstly, determine which category your app falls into: full-consent, pre-granted, or
cross-user. This will be referenced throughout this document.

If your privileged app already has the INTERACT_ACROSS_USERS permission then
you are cross-user. If you are listed in the cross_profile_apps.xml file, you are
pre-granted. Otherwise, as with the vast majority of apps, you are full-consent.

FYI - product caveats

● Work data will not be accessible when the work profile is off.
● The connected apps SDK is only supported from Oreo-onwards, which

encompasses the vast majority of work profiles. As discussed in the next
section, this requirement will actually be from Android 11 onwards for
most apps.

The following points apply to full-consent and pre-granted apps only:

● The permission is always user-revocable, so assume that you have to build
for the case where the apps are not connected.

● Connected apps is only supported from Android 11 onwards.
● Apps using this permission will need to be included in a Play Store

allowlist.

The following points apply to full-consent apps only:

● The default state will be off. You will need to send the user through the
consent flow to request the permission.

● The IT admin will need to consent to your app as well, or the user won’t be
able to give the permission.

● The app will need to be installed in both profiles. The consent flow already
prompts the user to install in the other profile if they haven’t already.

Getting Started

Overview

This section is designed to give engineers a 5-minute overview of how
cross-profile calls work with the SDK and how they can be tested. Don’t try to
build anything yet - this isn’t designed to be used as a reference or a guide, but
just as an introduction.

Custom profile-aware classes and methods

The connected apps SDK allows you to annotate your own classes and methods
as cross-profile. This generates classes and methods that allow you to execute
the annotated method on any profile.

For example, consider the following class, with SDK annotation added:

public class CalendarDatabase {

@CrossProfile // SDK annotation

public void deleteEvent(Event event, Account account) {

// complex logic with database calls

}

}

This generates a class prefixed with Profile, allowing you to call this API on the
profile of your choice. For example:

profileCalendarDatabase.work().deleteEvent(event, account);

More Complex Examples

More realistically, your classes and methods will be more complex. For example,
your existing API could use ListenableFuture return types and you might need
to combine results from both profiles. Consider this example:

public class CalendarDatabase {

@CrossProfile // SDK annotation

public ListenableFuture<Collection<Event>> getEvents() {

// complex logic with database calls

}

}

// Merge results from both profiles into a set

profileCalendarDatabase.both()

.getEvents()

.transform((Map<Profile, Collection<Event>> events) -> {

return events.values()

.stream()

.flatMap(Collection::stream)

.collect(Collectors.toSet());

}, directExecutor());

These generated classes and methods work as expected with full type safety and
IDE code completion.

Each return and parameter type of your annotated APIs must be supported by the
SDK, but it fully supports nesting and generics of lists, sets, arrays, primitives, any
parcelable type, and any serializable type, in addition to ListenableFuture,
Optional, and protos. It's also possible for you to add support for types not
natively supported by the SDK. As an extreme example, it would seamlessly
support ListenableFuture<List<Map<CustomProto,
CustomParcelableType[]>>>.

Testing

The SDK is designed to make unit testing as easy as possible. For each
generated Profile class, there is a corresponding FakeProfile class that you can
provide work and personal instances to. For example:

// Create an instance of the SDK-generated fake connector class. This

// class allows you to control the availability of the profiles, which

// profile you are currently running on, etc.

private final FakeCrossProfileConnector connector =

new FakeCrossProfileConnector();

// Create an instance of your real/fake/mock class for both profiles.

private final CalendarDatabase personalCalendarDatabase =

new FakeCalendarDatabase();

private final CalendarDatabase workCalendarDatabase =

new FakeCalendarDatabase();

// Create an instance of the SDK-generated fake profile-aware class.

private final FakeProfileCalendarDatabase profileCalendarDatabase =

FakeProfileCalendarDatabase.builder()

.personal(personalCalendarDatabase)

.work(workCalendarDatabase)

.connector(connector)

.build();

// Pass profileCalendarDatabase into your classes under test, or set

// Dagger up to inject the fake automatically.

Hello World

This section shows you how to create a cross-profile hello world call within your
app. This will give you familiarity with the SDK and an initial implementation to
build on top of. You are recommended to actively follow along by developing in
your app.

Ensure that you have a test device with a work profile to test on

The easiest way to do this is with an app called TestDPC. This app allows you to
mimic being an IT admin, including creating and managing a work profile.
Download the TestDPC apk from here, then install it with adb and open the 'set
up...' icon to create the work profile. When installing your app, it will normally
automatically install in both profiles. If you ever need to install it explicitly into the
work profile, you can use the --user argument with adb install.

Ensure your application is configured appropriately

Enable java 8 support and ensure your minSdk is at least 19.

Add gradle dependencies

dependencies {

annotationProcessor

'com.google.android.enterprise.connectedapps:connectedapps-processor:1.0.0-alpha05'

implementation

'com.google.android.enterprise.connectedapps:connectedapps:1.0.0-alpha05'

implementation

'com.google.android.enterprise.connectedapps:connectedapps-annotations:1.0.0-alpha0

5'

}

We use Guava in this example. This is not a requirement of using the SDK, but to
follow along with the hello world you should also add
api("com.google.guava:guava:29.0-android")

https://github.com/googlesamples/android-testdpc/releases
https://developer.android.com/studio/write/java8-support#supported_features

Create a new class that will contain your test cross-profile call

To make this more useful later, you should put it in the same package that you
would like your real cross-profile calls to go in.

public class HelloWorld {

@CrossProfile

public ListenableFuture<String> helloWorld() {

return Futures.immediateFuture("Hello world");

}

}

If you can’t depend on Guava for Futures support, just follow along for now and
then see the final step which tells you which changes to make.

Make a cross-profile call

You could do this in a class that will need to make real cross-profile calls later.

// TODO: inject/pass these into the class later instead.

CrossProfileConnector crossProfileConnector =

CrossProfileConnector.builder(this).build();

ProfileHelloWorld profileHelloWorld =

ProfileHelloWorld.create(crossProfileConnector);

ListenableFuture<Map<Profile, String>> resultsFuture =

profileHelloWorld.both().helloWorld();

FluentFuture.from(resultsFuture)

.addCallback(new FutureCallback<Map<Profile, String>>() {

@Override

public void onSuccess(Map<Profile, String> results) {

for (Profile profile : results.keySet()) {

Log.w("tag", "CROSS_PROFILE profile: " + profile.asInt()

+ "; result: " + results.get(profile));

}

}

@Override

public void onFailure(Throwable t) {

Log.e(TAG, "Failed to say hello world on both profiles", t);

}

}, directExecutor());

Provide the instance to the SDK

Of course, the helloWorld method call above is on a generated class and not
the real one. Often, your real classes are singletons or other complex classes
dependent on dependency injection frameworks such as Dagger.

To allow the logic to be called on the real class on the other profile, each custom
@CrossProfile class must have a corresponding provider method in a
@CrossProfileProvider class. Create this class.

public class HelloWorldProvider {

@CrossProfileProvider

public HelloWorld getHelloWorld() {

return new HelloWorld();

}

}

Additional wiring

The code generation required to support custom classes and methods requires a
small amount of additional wiring. This is to handle the complexities of having
many build targets and visibility requirements at scale.

Firstly, annotate an existing or new high-level class with
@CrossProfileConfiguration, pointing to your provider classes.

@CrossProfileConfiguration(providers = HelloWorldProvider.class)

abstract class HelloWorldConfiguration {}

Secondly, add the automatically-generated service to your manifest, inside the
<application> tag. This may not resolve until you build your project.

<service

android:name="com.google.android.enterprise.connectedapps.CrossProfileConnector_Ser

vice"

android:exported="false"/>

Finally, for development purposes, give yourself the INTERACT_ACROSS_USERS
permission. If you don’t have it already, you won’t be able to keep this in
production, but it’s the easiest way to get started. Firstly, add it to your manifest
as follows:

<uses-permission

android:name="android.permission.INTERACT_ACROSS_USERS"

tools:ignore="ProtectedPermissions"/>

Then, you can grant yourself the permission from the command line with adb as
follows (if your app does not already have it):

adb shell pm grant <your package> android.permission.INTERACT_ACROSS_USERS

If you were not able to depend on Guava for Futures, you will need to make a few
changes. Firstly, simply return the "Hello World" string directly and print the
results of the cross-profile call out. Secondly, since these calls are now
synchronous, you should place your cross-profile call and printing of results
inside the connection listener.

When you run the code listed under “make a cross-profile call” you should see
two logs for “Hello World”, one from each profile. If you only get one log, make
sure you’ve installed your app in both profiles and have granted the permission.

Production Ready

This section assumes that you have already completed the hello world guide. It
will take you through converting this into a full implementation. It often links out
to the development reference sections of this document.

Switch out the logic from the hello world example for your real
cross-profile logic

Feel free to keep it messy and not worry about best practices like testability yet.
Make sure to check that it works!

This includes modifying the cross-profile class, the cross-profile calls, and the
provider. If you need a Context in the provider method or the constructor of the
provider class, you can add one as a parameter and the SDK will automatically
provide it.

You will need to decide whether your calls will be asynchronous or synchronous.
You should also ensure that all parameter and return types used by your
cross-profile calls are supported.

Finally, add version checks. For cross-user apps, the SDK calls will only work on
Oreo+. For everybody else, the SDK calls will only work on Android 11+.

Refactor your logic to have an architecture that you could submit

Read through each of the architectural suggestions first so you don’t have to do
multiple conflicting refactorings. Once you’ve planned out any changes, work
back through them and check them off, re-building and testing after each change.

Double-check privacy/security

Double-check that you are not at risk of storing data in the wrong profile or
sending data to a server (including server logging) from the wrong profile.

Consider other best practices

● Consider designating a profile as primary to simplify your calls. Think
about what happens if your logic is run on either profile.

● Refresh your UI when the availability of the other profile changes.
● Review the discussion of exceptions in case you need to take any action.
● If you expect users might only use the app icon in one of the two profiles,

add the android:crossProfile = "true" Manifest attribute. This
prevents the app not directly used by the user from being delegated into
lower app standby buckets.

Add tests

See testing documentation.

Consider permissions

If your app is full-consent, switch your permission from INTERACT_ACROSS_USERS

to INTERACT_ACROSS_PROFILES and implement requesting the permission from the
user. Apps declaring INTERACT_ACROSS_PROFILES can't be uploaded to the Play
store until allow-listed, so this manifest change should be behind a flag until this
is done.

If your app is pre-granted, you might also want to do this if you want to prompt
users who previously turned it off (but be responsible - do not spam users).

Details

These sections are meant for reference and it is not required that you read them
top-to-bottom.

Requesting user consent

For now, use framework APIs
CrossProfileApps#canInteractAcrossProfiles,

https://developer.android.com/topic/performance/appstandby

CrossProfileApps#canRequestInteractAcrossProfiles,
CrossProfileApps#createRequestInteractAcrossProfilesIntent, and
CrossProfileApps#ACTION_CAN_INTERACT_ACROSS_PROFILES_CHANGED.

These APIs will be wrapped in the SDK for a more consistent API surface (e.g.
avoiding UserHandle objects), but for now, you can call these directly.

The implementation is straightforward: if you can interact, go ahead. If not, but
you can request, then show your user prompt/banner/tooltip/etc. If the user
agrees to go to Settings, create the request intent and use Context#startActivity
to send the user there. You can either use the broadcast to detect when this
ability changes, or just check again when the user comes back.

To test this, you’ll need to open TestDPC in your work profile, scroll to the very
bottom and select to add your package name to the connected apps allowlist.
This mimics the admin allowlisting your app.

Glossary

Cross Profile Configuration

A Cross Profile Configuration groups together related Cross Profile Provider
Classes and provides general configuration for the cross-profile features.
Typically there will be one @CrossProfileConfiguration annotation per codebase,
but in some complex applications there may be multiple.

Profile Connector

A Connector manages connections between profiles. Typically each cross profile
type will point to a specific Connector. Every cross profile type in a single
configuration must use the same Connector.

Cross Profile Provider Class

A Cross Profile Provider Class groups together related Cross Profile Types.

Mediator

A mediator sits between high-level and low-level code, distributing calls to the
correct profiles and merging results. This is the only code which needs to be
profile-aware. This is an architectural concept rather than something built into the
SDK.

Cross Profile Type

A cross profile type is a class or interface containing methods annotated
@CrossProfile. The code in this type needs not be profile-aware and should
ideally just act on its local data.

Profile Types

Profile Type Description

Current The profile we are currently executing on.

Other (if it exists) The profile we are not currently executing on.

Personal User 0, the profile on the device that cannot be switched off.

Work Typically user 10 but may be higher, can be toggled on and off,

used to contain work apps and data.

Primary Optionally defined by the application. The profile which shows a

merged view of both profiles.

Secondary If primary is defined, secondary is the profile which is not primary.

Supplier The suppliers to the primary profile is both profiles, the suppliers

to the secondary profile is only the secondary profile itself.

Profile Identifier

A class which represents a type of profile (personal or work). These will be
returned by methods which run on multiple profiles and can be used to run more
code on those profiles. These can be serialised to an int for easy storage.

Architectural Best Practices

Convert your CrossProfileConnector into a singleton

Only a single instance should be used throughout the lifecycle of your
application, or else you will create parallel connections. This can be done either
using a dependency injection framework such as Dagger, or by using a classic
Singleton pattern, either in a new class or an existing one.

Inject/pass in the generated Profile instance into your class for when you
make the call, rather than creating it in the method

This allows you to pass in the automatically-generated FakeProfile instance in
your unit tests later.

Consider the mediator pattern

This common pattern is to make one of your existing APIs (e.g. getEvents())
profile-aware for all of its callers. In this case, your existing API can just become
a 'mediator' method/class that contains the new call to generated cross-profile
code. This way, you don’t force every caller to know to make a cross-profile call -
it just becomes part of your API.

https://en.wikipedia.org/wiki/Singleton_pattern

Consider whether to annotate an interface method as @CrossProfile
instead to avoid having to expose your implementation classes in a
provider

This works nicely with dependency injection frameworks.

If you are receiving any data from a cross-profile call, consider whether to
add a field referencing which profile it came from

This can be good practice since you might want to know this at the UI layer (e.g.
adding a badge icon to work stuff). It also might be required if any data identifiers
are no longer unique without it, such as package names.

Primary Profiles

Most of the calls in examples on this doc contain explicit instructions on which
profiles to run on, including work, personal, and both.

In practice, for apps with a merged experience on only one profile, you likely want
this decision to depend on the profile that you are currently running on, so there
are similar convenient methods that also take this into account, to avoid your
codebase being littered with if-else profile conditionals.

When creating your connector instance, you can specify which profile type is your
'primary' (e.g. 'WORK'). This enables additional options, such as the following:

profileCalendarDatabase.primary().getEvents();

profileCalendarDatabase.secondary().getEvents();

// Runs on all profiles if currently running on the primary, or just

// on the current profile if currently running on the secondary.

profileCalendarDatabase.suppliers().getEvents();

Cross Profile Types

Classes and interfaces which contain a method annotated @CrossProfile are
referred to as Cross Profile Types.

The implementation of Cross Profile Types should not be aware of the profile
they are running on. They are allowed to make calls to other methods and in
general should work like they were running on a single profile. They will only have
access to state in their own profile.

An example Cross Profile Type:

public class Calculator {

@CrossProfile

public int add(int a, int b) {

return a + b;

}

}

Class annotation

To provide the strongest API, you should specify the connector for each cross
profile type, as so:

@CrossProfile(connector=MyProfileConnector.class)

public class Calculator {

@CrossProfile

public int add(int a, int b) {

return a + b;

}

}

This is optional but means that the generated API will be more specific on types
and stricter on compile-time checking.

Interfaces

By annotating methods on an interface as @CrossProfile you are stating that
there can be some implementation of this method which should be accessible
across profiles. You can return any implementation of a Cross Profile interface in
a Cross Profile Provider and by doing so you are saying that this implementation
should be accessible cross-profile. You do not need to annotate the
implementation classes.

Cross Profile Providers

Every Cross Profile Type must be provided by a method annotated
@CrossProfileProvider. These methods will be called each time a
cross-profile call is made, so it is recommended that you maintain singletons for
each type.

Constructor

A provider must have a public constructor which takes either no arguments or a
single Context argument.

Provider Methods

Provider methods must take either no arguments or a single Context argument.

Dependency Injection

If you're using a dependency injection framework such as Dagger to manage
dependencies, we recommend that you have that framework create your cross
profile types as you usually would, and then inject those types into your provider
class. The @CrossProfileProvider methods can then return those injected
instances.

Profile Connector

Each Cross Profile Configuration must have a single Profile Connector, which is
responsible for managing the connection to the other profile.

The Profile Connector's connect method must be called before any blocking
interaction with the SDK. See synchronous calls. If you are only using
asynchronous calls, this does not apply to you.

Default Profile Connector

If there is only one Cross Profile Configuration in a codebase, then you can avoid
creating your own Profile Connector and use
com.google.android.enterprise.connectedapps.CrossProfileConnector.
This is the default used if none is specified.

When constructing the CrossProfileConnector, you can specify some options on
the builder:

Scheduled Executor Service

If you want to have control over the threads created by the SDK, use
#setScheduledExecutorService()

Binder

If you have specific needs regarding profile binding, use #setBinder. This is
likely only used by Device Policy Controllers.

Custom Profile Connector

You will need a custom profile connector to be able to set some configuration
(using CustomProfileConnector) and will need one if you need multiple
connectors in a single codebase (for example if you have multiple processes, we
recommend one connector per process).

When creating a ProfileConnector it should look like:

@GeneratedProfileConnector

public interface MyProfileConnector extends ProfileConnector {

public static MyProfileConnector create(Context context) {

// Configuration can be specified on the builder

return GeneratedMyProfileConnector.builder(context).build();

}

}

You should use a single instance of your profile connector throughout your
application. This can be managed by dagger or other dependency injection
framework, or by having a class maintain the singleton.

When creating a custom profile connector, apply the @CustomProfileConnector

annotation to your class to specify options:

serviceClassName

To change the name of the service generated (which should be referenced in your
AndroidManifest.xml), use serviceClassName=.

primaryProfile

To specify the primary profile, use primaryProfile=.

availabilityRestrictions

To change the restrictions the SDK places on connections and profile availability,
use availabilityRestrictions=.

Device Policy Controllers

If your app is a Device Policy Controller, then you must specify an instance of
DpcProfileBinder referencing your DeviceAdminReceiver.

If you are implementing your own profile connector:

@GeneratedProfileConnector

public interface DpcProfileConnector extends ProfileConnector {

public static DpcProfileConnector get(Context context) {

return GeneratedDpcProfileConnector.builder(context).setBinder(new

DpcProfileBinder(new ComponentName("com.google.testdpc",

"AdminReceiver"))).build();

}

}

or using the default CrossProfileConnector:

CrossProfileConnector connector =

CrossProfileConnector.builder(context).setBinder(new DpcProfileBinder(new

ComponentName("com.google.testdpc", "AdminReceiver"))).build();`

Cross Profile Configuration

The @CrossProfileConfiguration annotation is used to link together all cross
profile types using a connector in order to dispatch method calls correctly. To do
this, we annotate a class with @CrossProfileConfiguration which points to
every provider, like so:

@CrossProfileConfiguration(providers = {TestProvider.class})

public abstract class TestApplication {

}

This will validate that for all Cross Profile Types they have either the same profile
connector or no connector specified.

serviceSuperclass

By default, the generated service will use android.app.Service as the
superclass. If you need a different class (which itself must be a subclass of
android.app.Service) to be the superclass, then specify serviceSuperclass=.

serviceClass

If specified, then no service will be generated. This must match the
serviceClassName in the profile connector you are using. Your custom service
should dispatch calls using the generated _Dispatcher class as such:

public final class TestProfileConnector_Service extends Service {

private Stub binder = new Stub() {

private final TestProfileConnector_Service_Dispatcher dispatcher = new

TestProfileConnector_Service_Dispatcher();

@Override

public void prepareCall(long callId, int blockId, int numBytes, byte[] params)

{

dispatcher.prepareCall(callId, blockId, numBytes, params);

}

@Override

public byte[] call(long callId, int blockId, long crossProfileTypeIdentifier,

int methodIdentifier, byte[] params,

ICrossProfileCallback callback) {

return dispatcher.call(callId, blockId, crossProfileTypeIdentifier,

methodIdentifier, params, callback);

}

@Override

public byte[] fetchResponse(long callId, int blockId) {

return dispatcher.fetchResponse(callId, blockId);

};

@Override

public Binder onBind(Intent intent) {

return binder;

}

}

This can be used if you need to perform additional actions before or after a
cross-profile call.

Connector

If you are using a connector other than the default CrossProfileConnector
then you must specify it using connector=.

Visibility

Every part of your application which interacts cross-profile must be able to see
your Profile Connector.

Your @CrossProfileConfiguration annotated class must be able to see every
provider used in your application.

Synchronous Calls

The Connected Apps SDK supports synchronous (blocking) calls for cases where
they are unavoidable. However, there are a number of disadvantages to using
these calls (such as the potential for calls to block for a long time) so it is
recommended that you avoid synchronous calls when possible. For using
asynchronous calls see Asynchronous calls.

Connection Holders

If you are using synchronous calls, then you must ensure that there is a
connection holder registered before making cross profile calls, otherwise an
exception will be thrown. For more information see Connection Holders.

To add a connection holder, call
ProfileConnector#addConnectionHolder(Object) with any object
(potentially, the object instance which is making the cross-profile call). This will
record that this object is making use of the connection and will attempt to make
a connection. This must be called before any synchronous calls are made. This is
a non-blocking call so it is possible that the connection won't be ready (or may
not be possible) by the time you make your call, in which case the usual error
handling behaviour applies.

If you lack the appropriate cross-profile permissions when you call
ProfileConnector#addConnectionHolder(Object) or no profile is available
to connect, then no error will be thrown but the connected callback will never be
called. If the permission is later granted or the other profile becomes available
then the connection will be made then and the callback called.

Alternatively, ProfileConnector#connect(Object) is a blocking method which
will add the object as a connection holder and either establish a connection or
throw an UnavailableProfileException. This method can not be called from
the UI Thread.

Calls to ProfileConnector#connect(Object) and the similar
ProfileConnector#connect return auto-closing objects which will
automatically remove the connection holder once closed. This allows for usage
such as:

try (ProfileConnectionHolder p = connector.connect()) {

// Use the connection

}

Once you are finished making synchronous calls, you should call
ProfileConnector#removeConnectionHolder(Object). Once all connection
holders are removed, the connection will be closed.

Connectivity

A connection listener can be used to be informed when the connection state
changes, and connector.utils().isConnected can be used to determine if a
connection is present. For example:

// Only use this if using synchronous calls instead of Futures.

crossProfileConnector.connect(this);

crossProfileConnector.registerConnectionListener(() -> {

if (crossProfileConnector.utils().isConnected()) {

// Make cross-profile calls.

}

});

Asynchronous Calls

Every method exposed across the profile divide must be designated as blocking
(synchronous) or non-blocking (asynchronous). Any method which returns an
asynchronous data type (e.g. a ListenableFuture) or accepts a callback
parameter is marked as non-blocking. All other methods are marked as blocking.

Asynchronous calls are recommended. If you must use synchronous calls see
Synchronous Calls.

Callbacks

The most basic type of non-blocking call is a void method which accepts as one
of its parameters an interface which contains a method to be called with the
result. To make these interfaces work with the SDK, the interface must be
annotated @CrossProfileCallback. For example:

@CrossProfileCallback

public interface InstallationCompleteListener {

void installationComplete(int state);

}

This interface can then be used as a parameter in a @CrossProfile annotated
method and be called as usual. For example:

@CrossProfile

public void install(String filename, InstallationCompleteListener callback) {

// Do something on a separate thread and then:

callback.installationComplete(1);

}

// In the mediator

profileInstaller.work().install(filename, (status) -> {

// Deal with callback

}, (exception) -> {

// Deal with possibility of profile unavailability

});

If this interface contains a single method, which takes either zero or one
parameters, then it can also be used in calls to multiple profiles at once.

Any number of values can be passed via a callback, but the connection will only
be held open for the first value. See Connection Holders for information on
holding the connection open to receive more values.

Synchronous methods with callbacks

One unusual feature of using callbacks with the SDK is that you could technically
write a synchronous method which uses a callback:

public void install(InstallationCompleteListener callback) {

callback.installationComplete(1);

}

In this case, the method is actually synchronous, despite the callback. This code
would execute correctly:

System.out.println("This prints first");

installer.install(() -> {

System.out.println("This prints second");

});

System.out.println("This prints third");

However, when called using the SDK, this will not behave in the same way. There
is no guarantee that the install method will have been called before “This prints
third” is printed. Any uses of a method marked as asynchronous by the SDK must
make no assumptions about when the method will be called.

Simple Callbacks

"Simple callbacks" are a more restrictive form of callback which allows for
additional features when making cross-profile calls. Simple interfaces must
contain a single method, which can take either zero or one parameters.

You can enforce that a callback interface must remain simply by specifying
simple=true in the @CrossProfileCallback annotation.

Simple callbacks are usable with .both(), .suppliers(), etc.

Connection Holders

When making an asynchronous call (using either callbacks or futures) a
connection holder will be added when making the call and removed when either
an exception or a value is passed.

If you expect more than one result to be passed via a callback, you should
manually add the callback as a connection holder:

MyCallback b = //...

connector.addConnectionHolder(b);

profileMyClass.other().registerListener(b);

// Now the connection will be held open indefinitely, once finished:

connector.removeConnectionHolder(b);

This can also be used with a try-with-resources block:

MyCallback b = //...

try (ProfileConnectionHolder p = connector.addConnectionHolder(b)) {

profileMyClass.other().registerListener(b);

// Other things running while we expect results

}

If we make a call with a callback or future, the connection will be held open until a
result is passed. If we determine that a result will not be passed, then we should
remove the callback or future as a connection holder:

connector.removeConnectionHolder(myCallback);

connector.removeConnectionHolder(future);

For more information see Connection Holders

Futures

Futures are also supported natively by the SDK. Currently the only natively
supported Future type is ListenableFuture, though custom future types can be
used. To use futures you just declare a supported Future type as the return type
of a cross profile method and then use it as normal.

This has the same "unusual feature" as callbacks, where a synchronous method
which returns a future (e.g. using immediateFuture) will behave differently when
run on the current profile vs run on another profile. Any uses of a method marked
as asynchronous by the SDK must make no assumptions about when the method
will be called.

Threads

Do not block on the result of a cross-profile future or callback on the main
thread. If you do this, then in some situations your code will block indefinitely.
This is because the connection to the other profile is also established on the
main thread, which will never occur if it is blocked pending a cross-profile result.

Availability

An availability listener can be used to be informed when the availability state
changes, and connector.utils().isAvailable can be used to determine if
another profile is available for use. For example:

crossProfileConnector.registerAvailabilityListener(() -> {

if (crossProfileConnector.utils().isAvailable()) {

// Show cross-profile content

} else {

// Hide cross-profile content

}

});

Connection Holders

Connection holders are arbitrary objects which are recorded as having and
interest in the cross-profile connection being established and kept alive.

By default, when making asynchronous calls, a connection holder will be added
when the call starts, and removed when any result or error occurs.

Connection Holders can also be added and removed manually to exert more
control over the connection. Connection holders can be added using
connector.addConnectionHolder, and removed using
connector.removeConnectionHolder.

When there is at least one connection holder added, the SDK will attempt to
maintain a connection. When there are zero connection holders added, the
connection can be closed.

You must maintain a reference to any connection holder you add - and remove it
when it is no longer relevant.

Synchronous calls

Before making synchronous calls, a connection holder should be added. This can
be done using any object, though you must keep track of that object so it can be
removed when you no longer need to make synchronous calls.

Asynchronous calls

When making asynchronous calls connection holders will be automatically
managed so that the connection is open between the call and the first response
or error. If you need the connection to survive beyond this (e.g. to receive multiple
responses using a single callback) you should add the callback itself as a
connection holder, and remove it once you no longer need to receive further data.

Error Handling

By default, any calls made to the other profile when the other profile is not
available will result in an UnavailableProfileException being thrown (or
passed into the Future, or error callback for an async call).

To avoid this, developers can use #both() or #suppliers() and write their code
to deal with any number of entries in the resulting list (this will be 1 if the other
profile is unavailable, or 2 if it is available).

Exceptions

Any unchecked exceptions which happen after a call to the current profile will be
propagated as usual. This applies regardless of the method used to make the call
(#current(), #personal, #both, etc.).

Unchecked exceptions which happen after a call to the other profile will result in
a ProfileRuntimeException being thrown with the original exception as the
cause. This applies regardless of the method used to make the call (#other(),
#personal, #both, etc.).

Checked exceptions are not currently supported in Cross Profile methods.

ifAvailable

As an alternative to catching and dealing with UnavailableProfileException

instances, you can use the .ifAvailable() method to provide a default value
which will be returned instead of throwing an UnavailableProfileException.

For example:

profileNotesDatabase.other().ifAvailable().getNumberOfNotes(/* defaultValue= */ 0);

Testing

To make your code testable, you should be injecting instances of your profile
connector to any code which uses it (to check for profile availability, to manually

connect, etc.). You should also be injecting instances of your profile aware types
where they are used.

We provide fakes of your connector and types which can be used in tests.

First, add the test dependencies:

testAnnotationProcessor

'com.google.android.enterprise.connectedapps:connectedapps-processor:1.0.0-alpha05'

testCompileOnly

'com.google.android.enterprise.connectedapps:connectedapps-testing-annotations:1.0.

0-alpha05'

testImplementation

'com.google.android.enterprise.connectedapps:connectedapps-testing:1.0.0-alpha05'

Then, annotate your test class with @CrossProfileTest, identifying the
@CrossProfileConfiguration annotated class to be tested:

@CrossProfileTest(configuration = MyApplication.class)

@RunWith(RobolectricTestRunner.class)

public class NotesMediatorTest {

}

This will cause the generation of fakes for all types and connectors used in the
configuration.

Create instances of those fakes in your test:

private final FakeCrossProfileConnector connector = new

FakeCrossProfileConnector();

private final NotesManager personalNotesManager = new NotesManager(); //

real/mock/fake

private final NotesManager workNotesManager = new NotesManager(); // real/mock/fake

private final FakeProfileNotesManager profileNotesManager =

FakeProfileNotesManager.builder()

.personal(personalNotesManager)

.work(workNotesManager)

.connector(connector)

.build();

Set up the profile state:

connector.setRunningOnProfile(PERSONAL);

connector.createWorkProfile();

connector.turnOffWorkProfile();

Pass the fake connector and cross profile class into your code under test and
then make calls.

Calls will be routed to the correct target - and exceptions will be thrown when
making calls to disconnected/unavailable profiles.

Types

Supported Types

The following types are supported with no extra effort on your part. These can be
used as either arguments or return types for all cross-profile calls.

● Primitives (byte, short, int, long, float, double, char, boolean)
● Boxed Primitives (java.lang.Byte, java.lang.Short,

java.lang.Integer, java.lang.Long, java.lang.Float,
java.lang.Double, java.lang.Character, java.lang.Boolean,
java.lang.Void)

● java.lang.String

● Anything which implements android.os.Parcelable

● Anything which implements java.io.Serializable

● Single-dimension non-primitive arrays
● java.util.Optional

● java.util.Collection

● java.util.List

● java.util.Map

● java.util.Set

● android.util.Pair

● com.google.common.collect.ImmutableMap

Any supported generic types (for example java.util.Collection) may have
any supported type as their type parameter. For example,

java.util.Collection<java.util.Map<java.lang.String,

MySerializableType[]>> is a valid type.

Futures

The following types are supported only as return types:

● com.google.common.util.concurrent.ListenableFuture

Custom Parcelable Wrappers

If your type is not in the above list, first consider if it can be made to correctly
implement either android.os.Parcelable or java.io.Serializable. If it
cannot then see parcelable wrappers to add support for your type.

Custom Future Wrappers

If you wish to use a future type which is not in the above list, see future wrappers
to add support.

Parcelable Wrappers

Parcelable Wrappers are the way that the SDK adds support for unparcelable
types which cannot be modified. The SDK includes wrappers for many types but
if the type you need to use is not included you must write your own.

A Parcelable Wrapper is a class designed to wrap another class and make it
parcelable. It follows a defined static contract and is registered with the SDK so it
can be used to convert a given type into a parcelable type, and also extract that
type from the parcelable type.

In this section we will refer to the wrapped type as T, and the wrapper type as W.

Annotation

The parcelable wrapper class must be annotated @CustomParcelableWrapper,
specifying the wrapped class as originalType. For example:

@CustomParcelableWrapper(originalType=ImmutableList.class)

Format

Parcelable wrappers must implement Parcelable correctly, and must have a
static W of(Bundler, BundlerType, T) method which wraps the wrapped
type and a non-static T get() method which returns the wrapped type.

The SDK will use these methods to provide seamless support for the type.

Bundler

To allow for wrapping generic types (such as lists and maps), the of method is
passed a Bundler which is capable of reading (using #readFromParcel) and
writing (using #writeToParcel) all supported types to a Parcel, and a
BundlerType which represents the declared type to be written.

Bundler and BundlerType instances are themselves parcelable, and should be
written as part of the parcelling of the parcelable wrapper, so that it can be used
when reconstructing the parcelable wrapper.

If the BundlerType represents a generic type, the type variables can be found by
calling .typeArguments(). Each type argument is itself a BundlerType.

For an example see ParcelableCustomWrapper:

public class CustomWrapper<F> {

private final F value;

public CustomWrapper(F value) {

this.value = value;

}

public F value() {

return value;

}

}

@CustomParcelableWrapper(originalType = CustomWrapper.class)

public class ParcelableCustomWrapper<E> implements Parcelable {

private static final int NULL = -1;

private static final int NOT_NULL = 1;

private final Bundler bundler;

private final BundlerType type;

private final CustomWrapper<E> customWrapper;

/**

* Create a wrapper for a given {@link CustomWrapper}.

*

* <p>The passed in {@link Bundler} must be capable of bundling {@code F}.

*/

public static <F> ParcelableCustomWrapper<F> of(

Bundler bundler, BundlerType type, CustomWrapper<F> customWrapper) {

return new ParcelableCustomWrapper<>(bundler, type, customWrapper);

}

public CustomWrapper<E> get() {

return customWrapper;

}

private ParcelableCustomWrapper(

Bundler bundler, BundlerType type, CustomWrapper<E> customWrapper) {

if (bundler == null || type == null) {

throw new NullPointerException();

}

this.bundler = bundler;

this.type = type;

this.customWrapper = customWrapper;

}

private ParcelableCustomWrapper(Parcel in) {

bundler = in.readParcelable(Bundler.class.getClassLoader());

int presentValue = in.readInt();

if (presentValue == NULL) {

type = null;

customWrapper = null;

return;

}

type = (BundlerType) in.readParcelable(Bundler.class.getClassLoader());

BundlerType valueType = type.typeArguments().get(0);

@SuppressWarnings("unchecked")

E value = (E) bundler.readFromParcel(in, valueType);

customWrapper = new CustomWrapper<>(value);

}

@Override

public void writeToParcel(Parcel dest, int flags) {

dest.writeParcelable(bundler, flags);

if (customWrapper == null) {

dest.writeInt(NULL);

return;

}

dest.writeInt(NOT_NULL);

dest.writeParcelable(type, flags);

BundlerType valueType = type.typeArguments().get(0);

bundler.writeToParcel(dest, customWrapper.value(), valueType, flags);

}

@Override

public int describeContents() {

return 0;

}

@SuppressWarnings("rawtypes")

public static final Creator<ParcelableCustomWrapper> CREATOR =

new Creator<ParcelableCustomWrapper>() {

@Override

public ParcelableCustomWrapper createFromParcel(Parcel in) {

return new ParcelableCustomWrapper(in);

}

@Override

public ParcelableCustomWrapper[] newArray(int size) {

return new ParcelableCustomWrapper[size];

}

};

}

Registering with the SDK

Once created, to use your custom parcelable wrapper you'll need to register it
with the SDK.

To do this, specify parcelableWrappers={YourParcelableWrapper.class} in
either a CustomProfileConnector annotation or a CrossProfile annotation on
a class.

Future Wrappers

Future Wrappers are how the SDK adds support for futures across profiles. The
SDK includes support for ListenableFuture by default, but for other Future
types you may add support yourself.

A Future Wrapper is a class designed to wrap a specific Future type and make it
available to the SDK. It follows a defined static contract and must be registered
with the SDK.

In this section we will refer to the wrapped type as T, and the wrapper type as W.

Annotation

The future wrapper class must be annotated @CustomFutureWrapper, specifying
the wrapped class as originalType. For example:

@CustomFutureWrapper(originalType=SettableFuture.class)

Format

Future wrappers must extend
com.google.android.enterprise.connectedapps.FutureWrapper.

Future wrappers must have a static W create(Bundler, BundlerType) method
which creates an instance of the wrapper. At the same time this should create an
instance of the wrapped future type. This should be returned by a non-static T

getFuture() method. The onResult(E) and onException(Throwable)

methods must be implemented to pass the result or throwable to the wrapped
future.

Future wrappers must also have a static void writeFutureResult(Bundler,

BundlerType, T, FutureResultWriter<E>) method. This should register with
the passed in future for results, and when a result is given, call
resultWriter.onSuccess(value). If an exception is given,
resultWriter.onFailure(exception) should be called.

Finally, future wrappers must also have a static T<Map<Profile, E>>

groupResults(Map<Profile, T<E>> results) method which converts a map
from profile to future, into a future of a map from profile to result.
CrossProfileCallbackMultiMerger can be used to make this logic easier.

For example:

/** A very simple implementation of the future pattern used to test custom future

wrappers. */

public class SimpleFuture<E> {

public static interface Consumer<E> {

void accept(E value);

}

private E value;

private Throwable thrown;

private final CountDownLatch countDownLatch = new CountDownLatch(1);

private Consumer<E> callback;

private Consumer<Throwable> exceptionCallback;

public void set(E value) {

this.value = value;

countDownLatch.countDown();

if (callback != null) {

callback.accept(value);

}

}

public void setException(Throwable t) {

this.thrown = t;

countDownLatch.countDown();

if (exceptionCallback != null) {

exceptionCallback.accept(thrown);

}

}

public E get() {

try {

countDownLatch.await();

} catch (InterruptedException e) {

return null;

}

if (thrown != null) {

throw new RuntimeException(thrown);

}

return value;

}

public void setCallback(Consumer<E> callback, Consumer<Throwable>

exceptionCallback) {

if (value != null) {

callback.accept(value);

} else if (thrown != null) {

exceptionCallback.accept(thrown);

} else {

this.callback = callback;

this.exceptionCallback = exceptionCallback;

}

}

}

/** Wrapper for adding support for {@link SimpleFuture} to the Connected Apps SDK.

*/

@CustomFutureWrapper(originalType = SimpleFuture.class)

public final class SimpleFutureWrapper<E> extends FutureWrapper<E> {

private final SimpleFuture<E> future = new SimpleFuture<>();

public static <E> SimpleFutureWrapper<E> create(Bundler bundler, BundlerType

bundlerType) {

return new SimpleFutureWrapper<>(bundler, bundlerType);

}

private SimpleFutureWrapper(Bundler bundler, BundlerType bundlerType) {

super(bundler, bundlerType);

}

public SimpleFuture<E> getFuture() {

return future;

}

@Override

public void onResult(E result) {

future.set(result);

}

@Override

public void onException(Throwable throwable) {

future.setException(throwable);

}

public static <E> void writeFutureResult(

SimpleFuture<E> future, FutureResultWriter<E> resultWriter) {

future.setCallback(resultWriter::onSuccess, resultWriter::onFailure);

}

public static <E> SimpleFuture<Map<Profile, E>> groupResults(

Map<Profile, SimpleFuture<E>> results) {

SimpleFuture<Map<Profile, E>> m = new SimpleFuture<>();

CrossProfileCallbackMultiMerger<E> merger =

new CrossProfileCallbackMultiMerger<>(results.size(), m::set);

for (Map.Entry<Profile, SimpleFuture<E>> result : results.entrySet()) {

result

.getValue()

.setCallback(

(value) -> merger.onResult(result.getKey(), value),

(throwable) -> merger.missingResult(result.getKey()));

}

return m;

}

}

Registering with the SDK

Once created, to use your custom future wrapper you'll need to register it with the
SDK.

To do this, specify futureWrappers={YourFutureWrapper.class} in either a
CustomProfileConnector annotation or a CrossProfile annotation on a class.

Direct Boot Mode

If your app supports direct boot mode, then you may need to make cross-profile
calls before the profile is unlocked. By default, the SDK only allows connections
when the other profile is unlocked.

To change this behaviour, if you are using a custom profile connector, you should
specify
availabilityRestrictions=AvailabilityRestrictions.DIRECT_BOOT_AWA

RE:

@GeneratedProfileConnector

@CustomProfileConnector(availabilityRestrictions=AvailabilityRestrictions.DIRECT_BO

OT_AWARE)

public interface MyProfileConnector extends ProfileConnector {

public static MyProfileConnector create(Context context) {

return GeneratedMyProfileConnector.builder(context).build();

}

}

If you are using CrossProfileConnector, use
.setAvailabilityRestrictions(AvailabilityRestrictions.DIRECT_BOOT

_AWARE) on the builder.

With this change, you will be informed of availability, and able to make cross
profile calls, when the other profile is not unlocked. It is your responsibility to
ensure your calls only access device encrypted storage.

https://developer.android.com/training/articles/direct-boot

