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Abstract

YouTube traffic is bursty. These bursts trigger packet
losses and stress router queues, causing TCP’s
congestion-control algorithm to kick in. In this pa-
per, we introduce Trickle, a server-side mechanism that
uses TCP torate limit YouTube video streaming. Trickle
paces the video stream by placing an upper bound on
TCP’s congestion window as a function of the streaming
rate and the round-trip time. We evaluated Trickle on
YouTube production data centers in Europe and India
and analyzed its impact on losses, bandwidth, RTT, and
video buffer under-run events. The results show that
Trickle reduces the average TCP loss rate by up to 43%
and the average RTT by up to 28% while maintaining
the streaming rate requested by the application. Further,
our results show that Trickle has little impact on video
buffer under-run events experienced by the users. We
investigate the effectiveness of Trickle based on user
bandwidth and demonstrate that Trickle has more
benefits for high bandwidth users than low bandwidth
users.

1 Introduction

YouTube is one of the most popular online video ser-
vices. In fall 2011, YouTube was reported to account
for 10% of Internet traffic in North America [1]. This
vast traffic is delivered over TCP using HTTP progres-
sive download. The video is delivered just-in-time to the
video player, so when the user cancels a video, only
a limited quantity of data is discarded, conserving net-
work and server resources. Since TCP is designed to de-
liver data as quickly as possible, the YouTube server,
ustreamer, limits the data rate by pacing the data into
the connection. It does so by writing 64kB data blocks
into the TCP socket at fixed intervals. Unfortunately, this
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technique, termedapplication pacing, causes bursts of
back-to-back data packets in the network that have sev-
eral undesirable side effects. These bursts are responsible
for over 40% of the observed packet losses in YouTube
videos on at least one residential DSL provider [2].

This problem is not specific to YouTube videos. Sim-
ilar rate limiting techniques are implemented in other
popular video websites [6], and all are expected to ex-
perience similar side effects. For example, Netflix sends
bursts as large as 1 to 2MB.

As an alternative to application pacing, we present
Trickle to rate limit TCP on the server side. The key idea
in Trickle is to place a dynamic upper bound on the con-
gestion window (cwnd) such that TCP itself limits both
the overall data rate and maximum packet burst size us-
ing ACK clocking. The server application periodically
computes thecwnd bound from the network Round-Trip
Time (RTT) and the target streaming rate, and uses a
socket option to apply it to the TCP socket. Once it is set,
the server application can write into the socket without a
pacing timer and TCP will take care of the rest. Trickle
requires minimal changes to both server applications and
the TCP stack. In fact, Linux already supports setting the
maximum congestion window in TCP.

The main contribution of this paper is a simple and
generic technique to reduce queueing and packet loss by
smoothly rate-limiting TCP transfers. It requires only a
server-side change for easy deployment. It is not a spe-
cial mechanism tailored only for YouTube. As TCP has
emerged to be the default vehicle for most Internet appli-
cations, many of them require certain kinds of throttling.
The common practice, application pacing, may cause
burst losses and queue spikes. Through weeks-long ex-
periments on production YouTube data centers, we found
that Trickle reduces the packet losses by up to 43% and
RTTs by up to 28% compared to the application pacing.
The rest of the paper covers the design, our experiments,
and discussions of other techniques and protocols.
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Figure 1: Time vs. sequence of bytes graph for a sample
YouTube video with RTT 20ms.

2 YouTube Video Streaming

The YouTube serving infrastructure is complicated, with
many interacting components, including load balancing,
hierarchical storage, multiple client types and many for-
mat conversions. Most of these details are not important
to the experiment at hand, but some need to be described
in more detail.

All YouTube content delivery uses the same server ap-
plication, calledustreamer, independent of client type,
video format or geographic location. Ustreamer supports
progressive HTTP streaming and range requests. Most of
the time, a video is delivered over a single TCP connec-
tion. However, certain events, such as skipping forward
or resizing the screen can cause the client to close one
connection and open a new one.

The just-in-time video delivery algorithm in YouTube
uses two phases: astartup phase and athrottling phase.
The startup phase builds up the playback buffer in the
client, to minimize the likelihood of player pauses due
to the rebuffering (buffer under-run) events. Ustreamer
sends the first 30 to 40 seconds of video (codec time, not
network time) as fast as possible into the TCP socket,
like a typical bulk TCP transfer.

In the throttling phase, ustreamer uses a token bucket
algorithm to compute a schedule for delivering the video.
Tokens are added to the bucket at 125% of the video
encoding rate. Tokens are removed as the video is de-
livered. The delay timer for each data block (nominally
64kB) is computed to expire as soon as the bucket has
sufficient tokens. If the video delivery is running behind
for some reason, the calculated delay will be zero and the
data will be written to the socket as fast as TCP can de-
liver it. The extra 25% added to the data rate reduces the
number of rebuffering events when there are unexpected
fluctuations in network capacity, without incurring too
much additional discarded video.

Figure 1 illustrates the time-sequence graph of a
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Figure 2: Time vs. sequence of bytes graph for a
YouTube video with RTT 30ms using Trickle.

packet trace from a sample YouTube video stream. The
x-axis is time and the y-axis is the bytes of video. Verti-
cal arrows represent transmitted data segments that carry
a range of bytes at a particular time. After 1.4 seconds
of the flow being served in startup phase (which in this
case corresponds to the first 30 seconds of the video play-
back), the YouTube server starts to throttle the sending of
bytes to the network. During the throttling phase, every
network write is at most one block size plus headers.

In some environments the data rate is limited by some-
thing other than the ustreamer-paced writes. For ex-
ample, some video players implement their own throt-
tling algorithms [6], especially on memory and network-
constrained mobile devices. These devices generally stop
reading from the TCP socket when the playback buffer
is full. This is signalled back to the sender through TCP
flow control using the TCP receiver window field. As a
consequence, ustreamer is prevented from writing more
data into the socket until the video player reads more
data from the socket. In this mode, the sender behavior
is largely driven by the socket read pattern of the video
player: sending bursts is determined by the player read
size.

For short videos (less than 40 seconds) and videos
traversing slow or congested links, ustreamer may never
pause between socket writes, and TCP remains in bulk
transmit mode for the entire duration of the video.

3 Trickle

3.1 The Problem: Bursty Losses

The just-in-time delivery described above smoothes the
data across the duration of each video, but it has an un-
fortunate interaction with TCP that causes it to send each
64kB socket write as 45 back-to-back packets.

The problem is that bursts of data separated by idle pe-
riods disrupt TCP’s self clocking. For most applications
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TCP data transmissions are triggered by the ACKs re-
turning from the receiver, which provide the timing for
the entire system. With YouTube, TCP typically has no
data to send when the ACKs arrive, and then when us-
treamer writes the data to the socket it is sent immedi-
ately, because TCP has unusedcwnd.1

These bursts can cause significant losses, e.g., 40% of
the measured YouTube losses in a residential ISP [2].
Similar issues have also been reported by YouTube net-
work operations and other third parties. Worse yet, these
bursts also disrupt latency-sensitive applications by in-
curring periodic queue spikes [11,18]. The queueing time
of a 64kB burst over an 1Mbps link is 512ms.

Our goal is to implement just-in-time video delivery
using a mechanism that does not introduce large bursts
and preserves TCP’s self clocking.

3.2 Basic Ideas

A quick solution to the burst problem is to use smaller
blocks, e.g., 16kB instead of 64kB. However, this would
quadruple the overhead associated with write system
calls and timers on the IO-intensive YouTube servers. A
better solution is to implement a rate limit in TCP itself.
One approach could leverage TCP flow control by fixing
the receiver’s window (rwin) equal to the target stream-
ing rate multiplied by RTT. Once the receiver fixesrwin,
the ustreamer can write the video data into the socket as
fast as possible. The TCP throughput will be limited by
the receive window to achieve the target streaming rate.

However, this receiver-based approach is not practi-
cal because YouTube does control user browsers. Our
solution, in contrast, sets an upper-bound oncwnd of
target rate × RTT, where thetarget rate is the target
streaming rate of a video in the throttling phase. For-
tunately, Linux already provides this feature as a per-
route option calledcwnd clamp. We wrote a small kernel
patch to make it available as a per-socket option.

To illustrate the smoothing effect of Trickle we show
the time-sequence plot of a real YouTube connection in
Figure 2. The initial full rate startup phase lasts for 2.5
seconds. In the throttled phase the transmission is rate-
limited to 600kbps, by sendingcwnd clamp amount of
data per RTT. The result is in a smoother line compared
to the staggered steps (bursts) seen in Figure 1 with ap-
plication pacing.2

1In some cases using congestion window validation [13] would
force TCP to do new slow starts after idling over several retransmis-
sion timeouts (RTO). This would not always be useful in YouTube as
the application writes are more frequent.

2An animated demo of Trickle is available at
http://www.cs.toronto.edu/~monia/tcptrickle.html

3.3 Challenges

The above idea encounters two practical challenges:
(1) Network congestion causing rebuffering. Fol-

lowing a congestion episode, ustreamer should deliver
data faster than the target rate to restore the playback
buffer. Otherwise, the accumulated effects of multiple
congestion episodes will eventually cause rebuffering
events where the codec runs out of data. The current
application pacing avoids rebuffering after congestion
events implicitly: when TCP slows down enough to stall
writes to the TCP socket, ustreamer continues to ac-
cumulate tokens. Once the network recovers, ustreamer
writes data continuously until the tokens are drained, at
which point the average rate for the entire throttled phase
matches the target streaming rate. On the other hand,
clamping thecwnd will not allow such catch-up behav-
ior.

(2) Small cwnd causing inefficient transfers. For in-
stance, sending at 500kbps on a 20ms RTT connection
requires an average window size of 1250 bytes, which is
smaller than the typical segment size. With such a tiny
window all losses must be recovered by timeouts, since
TCP fast recovery requires a window of at least four
packets [5]. Furthermore, using a tiny window increases
the ustreamer overhead because it defeats TCP segmen-
tation offload (TSO) and raises the interrupt processing
load on the servers.

Algorithm 1: Trickle algorithm in throttling phase

R = target_rate(video_id)

while (new data available from the cache)

rtt = getsockopt(TCP_INFO)

clamp = rtt * R / MSS

clamp = 1.2 * clamp

goodput = delivered / elapsed

if goodput < R:

clamp = inf

if clamp < 10:

clamp = 10

write_throttle = true

setsockopt(MAX_CWND, clamp)

if write_throttle:

throttles writes at rate R

else:

write all available data

3.4 Design

Trickle starts from the basic design of cwnd limitation
and addresses both challenges. Algorithm 1 presents it in
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DC1 DC2
exp. #flows

(M)
size
(MB)

avg
comp.
time (sec)

avg
RT Tstartup

(ms)

med.
BW
(Mbps)

#flows
(M)

size
(MB)

avg
comp.
time (sec)

avg
RT Tstartup

(ms)

med.
BW
(Mbps)

baseline1 5.5 9.2 83 99 6 0.3 11.0 234 556 0.7
baseline2 5.4 9.2 84 98 6 0.3 11.0 234 554 0.7
Trickle 5.4 9.2 83 98 6 0.3 11.0 234 557 0.7

shrunk-block 5.5 9.1 82 93 6 0.3 11.0 233 554 0.7

Table 1: Network statistics in DC1 and DC2 binned by each experiment group.RTTstartup is the smoothed RTT (srtt)
at the end of the startup phase.

pseudocode.3 After the startup phase, the ustreamer de-
termines the streaming rate,R, based on the video encod-
ing rate. When the data from the cache system arrives, the
ustreamer gets the RTT and the Maximum Segment Size
(MSS) of the connection (using a socket option) to com-
pute the upper bound of theclamp. But before applying
the clamp on the connection, ustreamer takes two pre-
cautions to address the challenges described previously.

First, to deal with transient network congestion, us-
treamer adds some headroom to theclamp. In the ex-
periments we used 20% headroom but we also get simi-
lar results with 5%. If the link is experiencing persistent
congestion and/or does not have enough available band-
width, the ustreamer removes theclamp by setting it to
infinity and let TCP stream as fast as possible. When the
goodput has reachedR, the ustreamer will start clamping
again.

Second, the ustreamer never reducesclamp below
10 MSS to address the second constraint. Studies have
shown that Internet paths can tolerate burst of this size [7,
10]. However, doing this also increases the streaming
rate beyondR to 10×MSS/RTT. Ustreamer thus throttles
writes to rateR using application pacing. Unlike the orig-
inal ustreamer, however, our modified ustreamer never
causes bursts of more than 10 packets.

Finally, the ustreamer clamps thecwnd via a socket
option. If the write throttling is enabled, it throttles the
write at rateR. Otherwise it writes all data into the socket.

4 Experiments

We performed live experiments to evaluate Trickle on
production YouTube data centers. We begin this section
with the methodology to compare Trickle and existing
application pacing, followed by details of the data cen-
ters. Then, we present the measurement results that vali-
date the A/B test setup and Trickle implementation.

3An animated demo of Trickle is available at
http://www.cs.toronto.edu/~monia/tcptrickle.html

4.1 Methodology

We setup A/B test experiments on selected servers in pro-
duction YouTube data centers. The first goal is to evalu-
ate if Trickle reduces burst drops and queueing delays.
The second goal is to ensure the streaming quality is
as good or better than current systems. This is done by
measuring the average streaming rate and the rebuffering
events. In addition to comparing with current systems,
we also compare with the simplest solution, namely re-
ducing the block size from 64kB to 16kB. We ran 4-way
experiments by splitting the servers into four groups:

1. Baseline1: application pacing with 64kB blocks,

2. Baseline2: application pacing with 64kB blocks,

3. Trickle,

4. shrunk-block: application pacing with 16kB blocks.

In order to make an apples-to-apples comparison, new
TCP connections (video requests) are randomly assigned
to the servers in different experiment groups. Thus each
experiment group received similar distributions of users
and video requests. We use two baseline groups to esti-
mate the confidence level of the particular metric evalu-
ated in our analyses.

All servers use the standard Linux 2.6 kernel with CU-
BIC [12] congestion control. TCP configuration details
can be found in Dukkipatiet al. [9]. For every connec-
tion, we recorded statistics including video ID, IP and
ports, bytes sent and retransmitted, RTTs, and rebuffer-
ing events in both phases. We further filtered the connec-
tions that never enter throttling phase (short video play-
backs less than 30 seconds).

4.2 Validation

We ran experiments for 15 days during the fall of 2011
in two data centers representing relative extremes of the
user network conditions: DC1 in Western Europe and
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Figure 3:CDF of goodput in throttling phase in DC1 and DC2. The x-axis is in log scale.

DC2 in India. We first compare the statistics in the con-
trol variables in the experiments to validate the A/B
test setup. Table 1 summarizes these statistics in both
data centers. Each experiment group has roughly the
same number of flows within each data center. DC1 has
16 times more flows than DC2 because DC1 has more
servers participating in the experiment. The average flow
length and flow completion in each group are also similar
across different groups in the same data center.

We also measure the RTT and goodput, denoted as
RTTstartup and BW respectively, at the end of the startup
phase of each connection. BW is the average goodput
computed across the startup phase (typically for more
than 1mB of video data). In the rest of the paper, this
easily computed metric is used to gauge the network ca-
pacity relative to the target data rate. Since every exper-
iment group uses the original mechanism in the startup
phase,RTTstartup and BW should be similar across dif-
ferent group in the same data center; these results indi-
cate that each experiment group receives similar network
and application load, as well as the vast difference of user
network speed in the two regions.

One of the design goals of Trickle is to maintain the
same video streaming rate as the existing ustreamer ap-
plication. To verify this, for each video in our exper-
iments, we calculate the goodput during the throttling
phase and ensure the distributions match between all ex-
periment groups. Figure 3 demonstrates that the CDF of
goodput in all experiments groups match; i.e. the video
streaming rate is consistent whether or not Trickle is en-
abled.

5 Analysis

In the following sections, we present our experiments’
results. The results are statistics collected during the
throttling period only. As explained in the Section 4.2,
all the four experiment groups use the same mechanism
in the startup phase and their results are identical.

5.1 Packet Losses

The most important metric is packet loss because Trickle
is designed to reduce burst drops. Since losses can not
be accurately estimated in live server experiments [4],
we use retransmissions to approximate losses. Figure 4
plots the CDF of flow retransmission rate in the throttling
phase for DC1. As shown, the Trickle curve is consis-
tently above all three lines, indicating that it successfully
lowers the retransmission rate consistently compared to
the other three groups. In Trickle, 90% of connections
experience retransmission rate lower than 0.5%, while
85% have this behavior using shrunk-block and 80% in
baselines. On average, Trickle reduces the average re-
transmission rate by 43% and 28% compared to the base-
lines and shrunk-block experiments groups, respectively.
Overall, Trickle effectively reduces the drop rate com-
pared to application pacing using 64kB or 16kB block
sizes.

Unlike the results in DC1, however, we measured that
all four groups in DC2 have similar retransmission rate
distributions. This is because most DC2 users have in-
sufficient bandwidth to stream at the target rate. As de-
scribed in Section 3.4, Trickle will detect the delivery
is falling behind the target rate and stop clamping the
cwnd. Therefore connections are not rate-limited by the
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Figure 4: CDF of retransmission rate in the throttling phase.

DC1 DC2
BW (Mbps) %

flows
avg.
retrans.
imprv.

%
flows

avg.
retrans.
imprv.

< 0.5 1% 5% 39% 3%
0.5−1 3% 23% 26% 8%
1−2 10% 40% 17% 32%
2−4 28% 53% 9% 47%
4−8 35% 56% 6% 47%
≥ 8 23% 53% 3% 44%

Table 2:The retransmission rate improvement bucketed by
user bandwidth.

ustreamer throttling but by the network bandwidth and
behave like bulk download in all experiment groups.

To demonstrate the effect of bandwidth, we show the
average reduction of the retransmission rate between
Trickle and baseline1 bucketed by flows’s BW in Ta-
ble 2. Given that the average target rates are 677kbps
and 604kbps in DC1 and DC2 respectively, the table
shows that users with low bandwidth do not benefit from
Trickle. On the other hand, about half of packet losses
can be avoided in for high-bandwidth users in YouTube
using Trickle.

5.2 Burst Size

The previous results show that Trickle effectively re-
duces the loss rate. In this section, we demonstrate
that the reduction is achieved by Trickle sending much
smaller bursts. We randomly sampled 1% of flows and
collected tcpdump packet traces at the server to inves-
tigate the burstiness behavior. Following the convention
of prior studies [7, 14], we use packets instead of bytes

to measure the burst size. We use the same definition of
micro-burst as Blantonet al. [7]; a burst is a sequence of
four or more data packets with inter-arrival time less or
equal to 1 millisecond. We use four or more packets be-
cause TCP congestion control, e.g., slow start, naturally
sends bursts up to three packets.

Figure 5 plots the burst sizes in DC1. Intuitively, most
bursts in the two baseline groups should be about 43
packets (64kB) but in reality only 20% are. This mis-
match is due to packet losses and TCP congestion con-
trol. After a packet is lost, TCP congestion control re-
ducescwnd and gradually increases it while streaming
new data. Thesecwnd changes fragment the intermittent
64kB application writes.The TCP time-sequence graph
of a sample flow in the baseline1 group in

Figure 6 illustrates this point. The black arrows are
data bursts, the red dots are retransmits, and the pur-
ple dots are ACKs with SACK blocks. Around time 77
seconds, a large tail drop occurs causing TCP to re-
ducecwnd and enter slow start. At the 80 seconds mark,
TCPcwnd has increased to about 32kB. When ustreamer
writes 64KB into the socket, TCP sends a 32kB burst fol-
lowed by a series of small bursts triggered by returning
ACKs. The queue overflows once thecwnd reaches 64kB
at time 85 second. In this example, one loss event has
caused later 15 application writes to be fragmented into
many smaller bursts.

Back to Figure 5, The shrunk-block curve exhibits in-
teresting steps at 12, 23, and 34 packets corresponding
to 16, 32, and 48 kB block sizes, respectively. These
steps suggest that either the application and/or the ker-
nel (TCP) is bunching up the writes. We then discovered
that the ustreamer token bucket implementation does not
pause the write for intervals less than 100ms to save
timers. For a large portion of the flows, ustreamer con-
tinues to write 16kB blocks due to this special handling.
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Lastly, in Trickle 94% of bursts are within 10 pack-
ets, because DC1 users have short RTT such that most
videos require less than a 10 packet window to serve. As
described in Section 3.4, Trickle lower-bounds the clamp
to 10 packets to avoid slow loss recovery. The remaining
6% of bursts over 10 packets are contributed by either
high RTT, or high resolution videos, or other factors that
cause Trickle to not clamp thecwnd. In summary, over
80% of bursts in Trickle are smaller than the other mech-
anisms.

Next we investigate the correlation of loss and burst
size. Figure 7 shows, for each burst size, the fraction
of bursts of that size that experience at least one re-
transmission. Trickle not only reduces the bursts size
but the chances of losses with any given burst size. We
believe one factor is because the transmission is better
ack-clocked and has a smaller queue occupancy, as we
will show in Section 5.3. Interestingly the two baseline
groups suggest high drop rate for bursts of size 11, 17,
or 35. The shrunk-block group shows half of the bursts
of size 23 and 35 will experience losses. We are not able
to provide a satisfactory explanation due to the lack of
information at the bottlenecks, which are likely to reside
at the last mile. We hypothesize the phenomenon is pro-
duced by some common buffer configurations interacting
with YouTube application pacing.

5.3 Queueing Delay

Sending smaller bursts not only improves loss rate, it
may also help reduce the maximum queue occupancy
on bottleneck links. It is certainly not uncommon for
users to watch online videos while surfing the Web at
the same time. Since networks today are commonly over-
buffered [23], shorter queue length improves the latency
of interactive applications sharing the link.

We evaluate the impact of queue length by studying
the RTT measurements in TCP, due to the lack of di-
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Figure 6: Time vs. sequence of bytes graph of a flow in
baseline1 group. The black arrows are data bursts and
the red dots are retransmits. After it experiences losses,
the 64kB application writes are fragmented into smaller
bursts.

rect information of the bottleneck queues. Recall that a
RTT sample in TCP includes both the propagation de-
lay and queueing delay. Given that the four experiment
groups receive similar load, the propagation delay distri-
bution in each group should be close. Each video stream
often has hundreds to thousands of RTT samples partly
because Linux samples RTT per ACK packet. In order
to reduce the sample size, we instead use the smoothed
RTT (srtt) variable at the end of the connection. Since
srtt is a weighted moving average of all the RTT sam-
ples, it should reflect the overall queueing delay during
the connection.

Figure 8 plots the CDF of thesrtt samples for DC1.
On average, thesrtt of connections in the Trickle group
is 28% and 10% smaller than the connections in the base-
lines and shrunk-block groups, respectively. In DC2, the
improvement over baseline is only 7% and 1%. The rea-
son is similar to the analysis in Section 5.1: throttling
is seldom activated on the slow links in DC2. We mea-
sured that the links in India are alarmingly over-buffered:
20% of thesrtt samples were over 1 second while 2%
were over 4 seconds. While these videos are likely being
streamed in the background, the interactive applications
sharing the same bottleneck queue certainly will suffer
extremely high latency. In summary, for fast networks,
Trickle connections experience much lower queueing de-
lays, which should improve interactive application laten-
cies. For slow users, the solution is to use Trickle but
serve at a lower rate (lower resolution video).
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Figure 7: Frequency of losing at least one segment as a function of burst size in DC1.

5.4 Rebuffering

Rebuffering happens when a reduction in throughput
within a TCP streaming session causes receiver buffer
starvation. When this happens, the video player stops
playing video until it receives enough packets. Rebuffer-
ing rate is an important metric in video streaming as it
reflects user experience watching videos.

YouTube has a built-in mechanism to provide real-
time monitoring of video playbacks. During a playback,
the video player sends detailed information about user
interactions to the server. The information includes the
timestamps of all rebuffering events in each TCP con-
nection.

To quantify the user perceived performance of video
streaming, we use rebuffering chance and rebuffering
frequency suggested by previous works [19]. The re-
buffering chance measures the probability of experienc-
ing rebuffering events and is defined by percentage of
flows that experience at least one rebuffering event. Re-
buffering frequency measures how frequent the rebuffer-
ing events occur and is defined byr/T , wherer is the
number of rebuffering events andT is the duration of a
flow.

Table 3 shows the average of rebuffering metrics in
DC1 and DC2. DC2 users clearly have much worse expe-

DC1 DC2
rebuff.
freq.
(1/s)

rebuff.
chance
(%)

rebuff.
freq.
(1/s)

rebuff.
chance
(%)

baseline1 0.0005 2.5% 0.005 26%
baseline2 0.0005 2.5% 0.005 26%
Trickle 0.0005 2.5% 0.005 26%

shrunk-block 0.0005 2.5% 0.005 27%

Table 3:A comparison of rebuffering frequency and rebuffer-
ing chance.

rience than DC1 users. However, in both data centers the
rebuffering frequency and rebuffering chance are similar
between all four groups, suggesting Trickle has negligi-
ble impact on the streaming quality.

Initially the results puzzled us as we expected Trickle
to improve rebuffering by reducing burst drops. To ex-
plain the results, we studied the correlation of rebuffering
and various network metrics. We found that the band-
width deficit, the difference between the target stream-
ing rate and the bandwidth, is the key factor for rebuffer-
ing. In both DC1 and DC2, among the flows that do not
have sufficient bandwidth (positive deficit), 55% to 60%
of them have experienced at least one rebuffering event.
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Figure 8:CDF of the smoothed RTT (srtt) samples in DC1 and DC2. In DC1, the averagesrtt of connections in Trickle is 28%
and 10% lower than the connections in the baselines and shrunk-block, respectively. In DC2 the numbers are 7% and 1%.

Another major factor is when a user requests a different
resolution by starting a new connection.

However, the correlation between rebuffering and re-
transmission rate is less than 5%. This is because the
browser typically buffers enough video that losses rarely
cause buffer under-run. The exception is when the avail-
able bandwidth is or becomes too low, in which Trickle
can not help that since the congestion is not caused by
burst drops.

6 Discussions and Related Work

Trickle is motivated by Alcocket al.’s work [2], which
identified a YouTube burst drops problem in residen-
tial broadband and university networks. Further, Ash-
win et al. showed that popular browsers also throttle the
video streaming in addition to server side throttling in
YouTube and Netflix [6]. The bilateral throttling mech-
anisms sometimes result in packet bursts up to several
MBs. Blantonet al. studied the correlation between burst
size and losses in TCP [7]. They discovered that bursts
less than 15 packets rarely experience loss but large (over
100) bursts nearly always do. Allmanet al. evaluated
several changes to mitigate bursts created by TCP [3].
We did not try these solutions because the bursts in
YouTube are created by the application, not TCP con-
gestion control.

We have also considered other solutions to rate limit
video streaming. A similar idea that requires no ker-
nel TCP change is to set the TCP send socket buffer
size [20]. In the case of YouTube, the ustreamer TCP
send buffer remains auto-tuned [21] during the startup
phase in order to send data as fast as possible. Upon
entering the throttling phase, the buffer usually is al-
ready larger than the intended clamp value. Setting a new

send buffer size is not effective until the buffered amount
drops below the new size, making it difficult to imple-
ment the throttling. Some previous work control the rate
by dynamically adjusting the TCP receive window at the
receiver or the gateway [15, 17, 22]. Instead, Trickle is
server-based making it easier to deploy in a CDN.

Another approach is TCP pacing [24], i.e., pacing
cwnd amount of data over the RTT. While this may be
the best TCP solution to suppress bursts, it is also more
complex to implement. Moreover, studies have shown
that Internet paths can absorb small amount of packet
bursts [7, 10]. Our goal is to reduce large burst drops
caused by disruptions to the TCP self clocking. It is not
to eliminate any possible burst completely.

Delayed-based TCP congestion controls, e.g., Ve-
gas [8], may be another interesting solution to avoid burst
drops by detecting queues early. However it may not di-
rectly address the problem because these algorithms still
require proper ACK-clocking. But we plan to experiment
Trickle with delay-based congestion controls in the fu-
ture.

A non-TCP approach to consider is traffic shaping un-
derneath TCP. To our knowledge most software imple-
mentations, e.g., the Linux tc, can not scale to support the
number of connections of YouTube servers. Doing this
may require dedicated hardware while Trickle is a rela-
tively simple yet inexpensive solution. DCCP [16] sup-
ports unreliable delivery with congestion control based
on UDP. While DCCP is suitable for video streaming,
our work focuses on improving the current HTTP / TCP
model.
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7 Conclusions

The current throttling mechanism in YouTube sends
bursts that cause losses and large queues. We presented
Trickle, which removes these large bursts by doing rate-
limiting in TCP. Trickle dynamically sets a maximum
cwnd to control the streaming rate and strictly limit the
maximum size of bursts. Through large-scale real user
experiments, Trickle has effectively reduced the retrans-
missions by up to 50% in high bandwidth networks. It
also reduces the average RTT by up to 28%.

Trickle requires minimal sender-side changes, which
allows fast deployment at the content providers. It can
be generically applied to rate-limit other kinds of video
streaming or similar transfers. For example, variable bit
rate video streaming can use Trickle to serve individual
encoded blocks at different rates. We are actively deploy-
ing Trickle on YouTube servers and monitoring its per-
formance impact on various networks and devices. We
are also looking into new systems to improve the band-
width efficiency and rebuffering events to improve user
experience. We are hopeful that both Trickle in YouTube
and this paper can help reduce the burst stress in the In-
ternet.
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