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ABSTRACT
TCP flows start with an initial congestion window of at most
four segments or approximately 4KB of data. Because most
Web transactions are short-lived, the initial congestion win-
dow is a critical TCP parameter in determining how quickly
flows can finish. While the global network access speeds
increased dramatically on average in the past decade, the
standard value of TCP’s initial congestion window has re-
mained unchanged.

In this paper, we propose to increase TCP’s initial conges-
tion window to at least ten segments (about 15KB). Through
large-scale Internet experiments, we quantify the latency
benefits and costs of using a larger window, as functions
of network bandwidth, round-trip time (RTT), bandwidth-
delay product (BDP), and nature of applications. We show
that the average latency of HTTP responses improved by
approximately 10% with the largest benefits being demon-
strated in high RTT and BDP networks. The latency of low
bandwidth networks also improved by a significant amount
in our experiments. The average retransmission rate in-
creased by a modest 0.5%, with most of the increase com-
ing from applications that effectively circumvent TCP’s slow
start algorithm by using multiple concurrent connections.
Based on the results from our experiments, we believe the
initial congestion window should be at least ten segments
and the same be investigated for standardization by the
IETF.

Categories and Subject Descriptors
C.2.2 [Computer Communication Networks]: Network
Protocols—TCP, HTTP ; C.2.6 [Computer Communica-
tion Networks]: Internetworking—Standards; C.4 [Perfor-
mance of Systems]: Measurement techniques, Performance
attributes

General Terms
Measurement, Experimentation, Performance

Keywords
TCP, Congestion Control, Web Latency, Internet Measure-
ments

1. INTRODUCTION ANDMOTIVATION
We propose to increase TCP’s initial congestion window

to reduce Web latency during the slow start phase of a con-
nection. TCP uses the slow start algorithm early in the

connection lifetime to grow the amount of data that may be
outstanding at a given time. Slow start increases the conges-
tion window by the number of data segments acknowledged
for each received acknowledgment. Thus the congestion win-
dow grows exponentially and increases in size until packet
loss occurs, typically because of router buffer overflow, at
which point the maximum capacity of the connection has
been probed and the connection exits slow start to enter
the congestion avoidance phase. The initial congestion win-
dow is at most four segments, but more typically is three
segments (approximately 4KB) [5] for standard Ethernet
MTUs. The majority of connections on the Web are short-
lived and finish before exiting the slow start phase, making
TCP’s initial congestion window (init cwnd) a crucial pa-
rameter in determining flow completion time. Our premise
is that the initial congestion window should be increased to
speed up short Web transactions while maintaining robust-
ness.

While the global adoption of broadband is growing, TCP’s
init cwnd has remained unchanged since 2002. As per a
2009 study [4], the average connection bandwidth globally
is 1.7Mbps with more than 50% of clients having bandwidth
above 2Mbps, while the usage of narrowband (<256Kbps)
has shrunk to about 5% of clients. At the same time, appli-
cations devised their own mechanisms for faster download of
Web pages. Popular Web browsers, including IE8 [2], Fire-
fox 3 and Google’s Chrome, open up to six TCP connections
per domain, partly to increase parallelism and avoid head-of-
line blocking of independent HTTP requests/responses, but
mostly to boost start-up performance when downloading a
Web page.

In light of these trends, allowing TCP to start with a
higher init cwnd offers the following advantages:

(1) Reduce latency. Latency of a transfer completing in
slow start without losses [8], is:

!logγ(
S(γ − 1)
init cwnd

+ 1)# ∗ RTT +
S
C

(1)

where S is transfer size, C is bottleneck link-rate, γ is 1.5
or 2 depending on whether acknowledgments are delayed
or not, and S/init cwnd ≥ 1. As link speeds scale up,
TCP’s latency is dominated by the number of round-trip
times (RTT) in the slow start phase. Increasing init cwnd
enables transfers to finish in fewer RTTs.

(2) Keep up with growth in Web page sizes. The Inter-
net average Web page size is 384KB [14] including HTTP
headers and compressed resources. An average sized page
requires multiple RTTs to download when using a single
TCP connection with a small init cwnd. To improve page



load times, Web browsers routinely open multiple concur-
rent TCP connections to the same server. Web sites also
spread content over multiple domains so browsers can open
even more connections [7]. A study on the maximum num-
ber of parallel connections that browsers open to load a
page [16] showed Firefox 2.0 opened 24 connections and IE8
opened 180 connections while still not reaching its limit.
These techniques not only circumvent TCP’s congestion con-
trol mechanisms [13], but are also inefficient as each new flow
independently probes for end-to-end bandwidth and incurs
the slow start overhead. Increasing init cwnd will not only
mitigate the need for multiple connections, but also allow
newer protocols such as SPDY [1] to operate efficiently when
downloading multiple Web objects over a single TCP con-
nection.

(3) Allow short transfers to compete fairly with bulk data
traffic. Internet traffic measurements indicate that most
bytes in the network are in bulk data transfers (such as
video), while the majority of connections are short-lived and
transfer small amounts of data. Statistically, on start-up,
a short-lived connection is already competing with connec-
tions that have a congestion window greater than three seg-
ments. Because short-lived connections, such as Web trans-
fers, don’t last long enough to achieve their fair-share rate,
a higher init cwnd gives them a better chance to compete
with bulk data traffic.

(4) Allow faster recovery from losses. An initial win-
dow larger than three segments increases the likelihood that
losses can be recovered through Fast Retransmit rather than
the longer initial retransmission timeout. Furthermore, in
the presence of congestion, the widespread deployment of
Selective Acknowledgments (SACK) enables a TCP sender
to recover multiple packet losses within a round-trip time.

We propose to increase TCP’s init cwnd to at least ten
segments (approximately 15KB).1 To that end, we quantify
the latency benefits and costs, as measured in large scale
experiments conducted via Google’s front-end infrastructure
serving users a diverse set of applications.

Ideally, we want to pick an init cwnd satisfying each of
the following properties: (i) minimize average Web page
download time; (ii) minimize impact on tail latency due
to increased packet loss, and (iii) maintain fairness with
competing flows. Raising the initial congestion window to
ten segments can reasonably satisfy these properties. It im-
proves average TCP latency, yet is sufficiently robust for
use on the Internet. In the following, we articulate the per-
tinence of ten segments to TCP’s initial congestion window:

(1) Covers ≈90% of HTTP Web objects: 90% of HTTP re-
sponses from the top 100 and 500 sites fit within 16KB [14],
as shown in the response size distribution of Figure 1. The
distribution also shows that about 90% of Google Web search,
Maps, and Gmail responses fit in about 15KB or ten seg-
ments; for applications with larger average size such as Pho-
tos, about 20% more responses can fit within ten segments
as compared to three segments.

(2) Improves latency, while being robust: Figure 2 shows
the average TCP latency for Google Web search as init cwnd
is varied from 3 to 42 segments, in a small scale experiment
conducted concurrently on six servers in the same data cen-
ter (all offered similar traffic load and user base). Using
ten segments improves the average TCP latency compared

1We assume IP over Ethernet and a maximum segment size
of 1430 bytes.
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Figure 1: CDF of HTTP response sizes for top 100
sites, top 500 sites, all the Web, and for a few popu-
lar Google services. Vertical lines highlight response
sizes of 3 and 10 segments.
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Figure 2: TCP latency for Google search with dif-
ferent init cwnd values.

to using three segments. We note that raising init cwnd to
16 improves latency further. However, much larger values,
such as 42, show a degradation in latency, likely due to in-
creased packet losses. Larger scale experiments described in
the rest of the paper demonstrate at length the benefits and
potential costs of using an initial congestion window of ten
segments.

There are numerous studies in literature on speeding up
short transfers over new TCP connections [9, 15]. These
techniques range from faster start-up mechanisms using cached
congestion windows such as in TCP Fast Start, to more com-
plex schemes requiring router support such as Quick Start.
These solutions are neither widely deployed, nor standard-
ized, and do not have practical reference implementations.
A recent measurements study [12] showed that up to 15.8%
of Internet flows have an init cwnd larger than the standard
specification [5].

The rest of the paper is arranged as follows: Section 2
describes the experiments’ setup and datasets. Section 3
presents an analysis of receiver advertised windows. Sec-
tion 4 describes the experiment results with an initial con-
gestion window of ten, quantifying its benefits and cost an-
alyzed by network properties (bandwidth, BDP, RTT), as
well as traffic characteristics. Section 5 concludes the paper
with a discussion on future work.

2. EXPERIMENT SETUP AND DATASETS
Our experiments consist of enabling a larger initial conges-

tion window on front-end servers in several data centers at
geographically diverse locations. We compare the results us-
ing the larger window against data from the same data cen-
ters using the standard initial congestion window as a base-
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Figure 3: CDF of response bandwidth and RTT.

line. The front-end servers terminate TCP connections to
users on the Internet, and they may communicate with some
number of internal back-end servers which compute and pro-
vide response data for Google applications. The front-end
servers run Linux with a reasonably standards compliant
TCP implementation [6] (the congestion control algorithm
used is TCP CUBIC), and the initial congestion window is
configured using the initcwnd option in the ip route com-
mand. All front-end servers within a data center are config-
ured with the same initial congestion window. The network
is set up such that users in the same /24 subnet of a routed
prefix are served from the same data center, and if a service
requires multiple connections they are all served from the
same data center; thus all connections to Google services
from a particular subnet (at a /24 level) on the Internet are
subject to the same initial congestion window on the server
for the duration of the experiment.

We present data for two representative data centers de-
noted AvgDC and SlowDC. AvgDC serves subnets with av-
erage connection bandwidths that are similar to the world-
wide average reported in [4], with a median bandwidth of
1.2Mbps, and about one third of the traffic to subnets with
bandwidths >2Mbps. SlowDC serves subnets with a larger
proportion of lower connection bandwidths, with a median
bandwidth of 500Kbps, and nearly 20% of the traffic to sub-
nets with bandwidths <100Kbps. The median RTT for traf-
fic is approximately 70ms in both data centers. Figure 3
shows the distribution of bandwidth and RTT for traffic
served by AvgDC and SlowDC.

We collected data from each data center over two con-
secutive weeks. During the first week, the front-end servers
were configured with an initial congestion window of ten
(the experiment period). In the second week, the servers
used the standard initial congestion window of three (the
baseline period). The front-end servers logged information
for a sample percentage of HTTP transactions (requests and
corresponding responses). Each log entry records the client
and server IP addresses, the minimum TCP RTT seen on
the connection, the number of unique bytes sent, the number
of retransmitted bytes, and the Google application that pro-
vided the response. Several timestamps are logged for each

Figure 4: Latency timeline of an HTTP re-
quest/response.

Dataset # Subnets # Response Volume (TB)

AvgBaseData 1M 5.5B 39.3
AvgExpData 1M 5.5B 39.4
SlowBaseData 800K 1.6B 9.3
SlowExpData 800K 1.6B 9.1

Table 1: Datasets presented in the paper.

transaction which are denoted by T∗ in Figure 4; of particu-
lar interest are TRes1, the time at which the server sends the
first byte of a response, and TACK , the time when the server
receives the last acknowledgment for the response. The TCP
latency for a transaction, which we expect to be affected by
changing the initial congestion window, is TACK − TRes1.
Averaging this across all logged responses provides the av-
erage latency for a test configuration in the experiment. The
latency impact between the experiment period and the base-
line period is AvgLatencyBase − AvgLatencyExp, and the
percentage difference is
(AvgLatencyBase −AvgLatencyExp)∗100/AvgLatencyBase.
We are also interested in the metric of retransmission rate,
defined as the ratio of retransmitted bytes to the unique
bytes transmitted.

Table 1 lists the data sets collected in AvgDC and SlowDC
with the number of /24 subnets, responses, and volume of
data served during the experiment period and the baseline
period. Furthermore, the technical report at [10] shows that
the distributions of client subnet bandwidth, response RTT,
bandwidth-delay product, response size and mix of applica-
tions, compared over a four week period of the experiment
and baseline match very well.

3. CLIENT RECEIVE WINDOWS
Since TCP can only send the minimum of the congestion

rwnd of first HTTP request
OS % > 15KB Avg.
FreeBSD 91% 58KB
iPhone 66% 87KB
Linux 6% 10KB
Mac 93% 270KB
Win 7 94% 41KB
Win Vista 94% 35KB
Win XP 88% 141KB

Table 2: Initial receive window sizes. The operating
system is extracted from the HTTP User-Agent.



AvgDC SlowDC
Qtls Exp Base Diff [%] Exp Base Diff [%]
Avg 514 582 68 [11.7] 751 823 72 [8.7]
10.0 174 193 19 [9.84] 204 211 7 [3.32]
50.0 363 388 25 [6.44] 458 474 16 [3.38]
90.0 703 777 74 [9.52] 1067 1194 127 [10.64]
95.0 1001 1207 206 [17.07] 1689 1954 265 [13.56]
99.0 2937 3696 759 [20.54] 5076 5986 910 [15.20]
99.9 8463 10883 2420 [22.24] 16091 18661 2570 [13.77]

Table 3: Latency quantiles (in ms) and improve-
ment for Web search. Experiment (init cwnd=10)
and baseline results are referred to as Exp and Base
respectively. Diff is the difference between baseline
and experiment.

window and the client’s advertised receive window, the re-
ceive window (rwnd) may limit the potential performance
improvement of increasing init cwnd. In other words, clients
need to advertise at least a 15KB receive window on a con-
nection to fully benefit.

To evaluate the extent of this issue, we inspected the
rwnd field in the TCP header of the first HTTP request
of the clients’ connections to front-ends at geographically
distributed locations for 24 hours. Table 2 shows that op-
erating systems such as Windows, MacOS, and FreeBSD
specify large rwnds in the first HTTP request. The major
exception is Linux which mostly uses 8KB.2 Overall, more
than 90% of client connections have a large enough receive
window to fully benefit from using init cwnd=10 segments.

4. EXPERIMENT RESULTS
In this section we discuss the latency benefits and costs we

observed in our experiments with a larger initial congestion
window.

As most observations are common across the experiments,
we first present results from AvgDC and where results mate-
rially differ or deserve attention for low bandwidth subnets,
we discuss data of SlowDC. Similarly, we present data from
Google Web search queries, but where necessary also discuss
the performance of applications with different characteris-
tics, such as Google Maps that serves content via concurrent
TCP connections, and iGoogle or Blogger photos that have
relatively large average response sizes as shown in Figure 1.

4.1 Impact on Reducing TCP Latency
The average latency improvement of Web search in AvgDC

is 11.7%(68ms) and in SlowDC 8.7% (72ms). Table 3 shows
the improvement across quantiles from 10% to 99.9%. The
higher quantiles show relatively larger improvements, likely
due to the benefits of a large init cwnd in high RTT net-
works, e.g., saving two RTTs over a 300ms network path
improves latency by 600ms.

In the following discussion, we present further analysis of
the experimental data as functions of traffic characteristics
and subnet properties of bandwidth (BW), round-trip time
(RTT), and bandwidth-delay product (BDP).

Impact on subnets of varying BW, RTT and BDP
Figure 5 compares the latency improvements across different
buckets of subnet BW, RTT, and BDP. The subnet band-
2A patch submitted to the Linux kernel allows users to con-
figure initial rwnd.
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Figure 5: Average response latency for Web search
bucketed by RTT, BW, and BDP at AvgDC. The
left y-axis shows the absolute latency improvement
(in ms), and the right y-axis shows the percentage
improvement. The buckets are represented in the
lower x-axis scale, while the numbers at the top of
the plot represent the percentage responses in each
bucket. The buckets are named by the upper end of
RTT, BW, BDP.

width for each response is looked up from a central repos-
itory of bandwidth estimates to worldwide /24 subnets.3

RTT is the minimum recorded packet round-trip time by
each response, including that of SYN/SYN-ACK, and is the
closest estimate of path propagation delay. BDP is the prod-
uct of RTT and BW.

The average response latency improved across all buck-
ets of subnet properties. As expected, the largest ben-
efits are for high RTT and high BDP networks, because
most responses can fit within the pipe, i.e. response size
<= RTThigh ∗ BW , and can finish within one RTT, as op-
posed to lasting multiple RTT rounds in slow start. We note
that in our sample set, high BDP is mostly a consequence
of high RTT paths.

Correspondingly, responses from low RTT paths experi-
ence the smallest improvements; not just in absolute num-
bers, but also in terms of percentage. The percentage im-

3The central repository keeps track and computes running
averages of achieved throughput to user subnets using logs
collected by all the Google servers, and is updated on a
monthly basis.
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Figure 6: Average response latency for Web search
bucketed by BW at SlowDC.

provement is smaller because a smaller fraction of responses
benefit in low RTT networks i.e., responses with size <=
RTTlow ∗ BW . Those responses with size > RTTlow ∗ BW
need multiple RTTs regardless of the initial congestion win-
dow.

Figure 5 shows that latency also improves across the range
of subnet bandwidths. At larger bandwidths ( ≥2Mbps) the
improvements in both absolute and percentage are about the
same. This is expected because TCP’s latency during slow
start in the absence of losses is given by:

Slow start latency = NSlowstart ∗ RTT +
size
BW

(2)

where NSlowstart is the number of round trips in slow start.
In high BW networks the transmission delay is a relatively
small component and the improvement is in the number of
RTTs in the slow start phase, which is independent of BW.

We note that the percentage improvements shown in Fig-
ure 5 underestimate the attainable latency improvements.
For Google Web search, Equation 2 has an additional com-
ponent of back-end latency (≈200ms) before the entire HTTP
response can be made available at the front-end (at epoch
TResB2 in Figure 4). This is because of the latency involved
at the back-end between sending an initial burst of three to
four packets consisting of the response headers, and deliver-
ing the rest of the response body. The back-end processing
time manifests as idle time on the connection, lowering the
achievable percentage improvement.

Low bandwidth subnets
Responses from low bandwidth subnets demonstrated sig-

nificant latency improvements as shown in the 0-56 and 56-
256Kbps buckets of Figure 5. This is also true in SlowDC, as
shown in Figure 6, which has an even larger portion of traf-
fic in low BW buckets – approximately 4% and 17% of Web
search traffic in buckets 0-56Kbps and 56-256Kbps respec-
tively. A large portion of this traffic is from dial-up modems
as well as low bandwidth mobile networks. We note that
the improvement in low BW buckets is also reflected in low
BDP buckets. There are two reasons why low BW networks

Qtls 10 50 90 95 99

Exp 218 660 3023 5241 12328
Base 261 774 3997 6724 14374
Diff 43 114 974 1483 2046

Table 4: Latency quantiles (in ms) for Web search
from subnets with bandwidth ≤56Kbps in SlowDC.
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Figure 7: Average response latency at AvgDC for
Web search bucketed by number of segments. The
left y-axis shows the absolute improvement (in ms),
and the right y-axis shows the percentage improve-
ment. The buckets are represented in the lower x-
axis scale, while the numbers at the top of the plot
represent the percentage responses in each bucket.

observe improved latency:
(i) Fewer slow start rounds: Unlike many large BW net-

works, low BW subnets with dial-up modems and certain
mobile networks [11] have inherently large RTTs, probably
a consequence of coding techniques used at the link layer.
In our measurements, the average of the minimum RTTs
for 0-56 and 56-256Kbps subnets is 343ms and 250ms at
SlowDC. A larger initial window can save an RTT even on
slow links; e.g., with an RTT of 500ms, an 8KB transfer with
init cwnd=10 can complete within a round in slow start on a
128Kbps link, but would otherwise take at least two rounds.

(ii) Faster loss recovery: An init cwnd larger than three
segments increases the chances of a lost packet to be recov-
ered through Fast Retransmit as opposed to being recov-
ered by the longer initial retransmission timeout. The fast
retransmit algorithm requires three duplicate acknowledg-
ments as an indication that a segment has been lost rather
than reordered. A larger init cwnd allows a TCP sender
to receive better and faster feedback via more acknowledg-
ments.

We conclude the discussion for low BWs with Table 4 that
shows latency quantiles for traffic in 0-56Kbps for SlowDC.
We note that latency improves not only in the median but
also for higher quantiles.

Impact on traffic of varying sizes of responses
Figure 7 illustrates the improvement for responses of varying
sizes for Web search traffic (average size: 10.5KB).

Responses greater than three segments naturally demon-
strate larger improvements, because they experience fewer
number of round-trips in slow start as compared to the base-
line. The RTT rounds saved, and therefore the improvement
in absolute latency, grows (up to a limit) with response
sizes.4 The number of round-trips which can be saved in

slow start as computed from Equation 1 is !logγ(
init cwndhigh

init cwndlow
)#.

This yields a saving of up to three rounds for γ=1.5 (with
delayed acks), init cwndhigh=10 and init cwndlow=3. In
practice the savings can be up to four RTTs. The differ-
ence arises from the fact that Equation 1 rounds up a frac-
tional increase in congestion window per RTT which does
not occur in practice. Because larger responses take longer

4Note that the last bucket (>50 segments) in Web search
latency has a small sample number.



AvgDC SlowDC
Qtls Exp Base Diff Exp Base Diff

10.0 301 317 16 299 302 3
50.0 421 450 29 503 517 14
90.0 943 1060 117 1037 1161 124
95.0 1433 1616 183 1451 1627 176
99.0 3983 4402 419 3535 3979 444
99.9 9903 11581 1678 10471 10775 304

Table 5: Per-subnet average latency quantiles (in
ms) for Web search at AvgDC and SlowDC.

Qtls Maps iGoogle News Image Search

10.0 1 [2.1] 35 [21.6] 2 [3.6] 20 [12.0]
50.0 5 [2.2] 77 [20.3] 15 [6.2] 28 [7.3]
90.0 26 [3.8] 187 [17.8] 113 [15.9] 163 [14.6]
95.0 36 [3.1] 339 [18.9] 184 [15.4] 514 [23.5]
99.0 95 [3.1] 854 [14.4] 589 [14.0] 2190 [26.3]
99.9 278 [3.6] 2231 [11.9] 1147 [7.9] 7102 [27.5]

Table 6: Latency improvement for Google Maps,
iGoogle, Google News, and Image Search in AvgDC.
The average response sizes for these services are
6.4KB, 28KB, 28KB and 17KB, respectively. Each
entry represents the absolute improvement in ms
and percentage improvement (in brackets).

to complete, the percentage improvement in completing the
flow does not grow by the same factor as the absolute ben-
efits.

Responses with size ≤3 segments
Response sizes of three segments and smaller also demon-

strate small latency benefits (< 10ms). This can occur be-
cause a connection starting with init cwnd=10 is more likely
to have a larger cwnd for subsequent responses in the same
connection even after losses (upon a loss the congestion win-
dow is reduced multiplicatively).

Impact on per-subnet latency
We can statically break out subnets being served by 24-bit
IPv4 address prefixes (/24 subnets). A /24 subnet is an
approximation to a user base that is likely offered a similar
set of services by a common ISP. In this section, we discuss
how these subnets perform in terms of average latency.

From our experimental data, we averaged the latency of
Web search responses per /24 subnet. Only the subnets
observed in both the baseline and experiment are considered;
these subnets accounted for >99% of the HTTP responses
in our data sets. We then computed the distribution of per-
subnet latency averages.

Table 5 shows that average subnet latency improves across
the different quantiles. Note that the absolute per-subnet la-
tencies for baseline and init cwnd=10 in each quantile are
higher than the corresponding quantile in Table 3; this is ex-
pected as there is usually greater traffic volume originating
from subnets with higher bandwidths.

Impact on applications with different characteristics
So far we have discussed only Web search latency. Other
applications can generate traffic with different characteris-
tics either because of relative larger response size, such as
iGoogle, Google News, and Google Image Search, or because

they serve content using multiple concurrent TCP connec-
tions, such as Maps — browsers typically open four to six
connections per domain and Google’s Maps uses two do-
mains to download tiles, making up to twelve active con-
current connections. Table 6 shows that latency improves
across the quantiles for applications with different charac-
teristics.

Sec. 4.2 further discusses Maps behavior in the SlowDC.

Fairness among flows
A key concern with a large init cwnd is the potential short
term unfairness it may pose to traffic operating with smaller
congestion windows. To study the impact on fairness, we
analyse the performance of short reponses with size ≤3 seg-
ments (≈4KB for Ethernet MTUs). This constitutes traffic
not large enough to fill an initial window of ten but sharing
network paths and bottlenecks with larger responses. Data
in the technical report at [10] shows the average latency of
short responses in the experiment is very close to those in
the baseline. This may be evidence that connections with
larger init cwnd are not detrimental to ones having smaller
congestion windows.

4.2 Negative Impact
In previous sections, we have quantified the overall bene-

fits of using a higher init cwnd; in this section, we discuss its
costs, specifically cases where latency increases. Increase in
latency primarily arises from packet losses caused by over-
flowing bottleneck buffers, either at end-systems or at in-
termediate routers and switches. Losses prolong TCP flows
by adding extra RTTs required to recover lost packets, and
occasionally even resulting in retransmission timeouts.

Internet measurements and studies show that a critical
bottleneck in the Internet lies in the last mile at the user’s
access link [3]. Thus, if there is a cost associated with
init cwnd=10, it is likely that we will observe increased con-
gestion and packet losses in the experiment traffic. In this
section, we quantify this effect.

The effect on retransmission rate
TCP’s retransmission rate represents an upper bound for
the percentage of packets lost due to congestion. In this
section, we quantify the impact of init cwnd=10 on the re-
transmission rate of different applications. The average re-
transmission rate is defined as the ratio of retransmitted
bytes to that of unique bytes transmitted, expressed as a

AvgDC
All Web search Maps Photos

Exp 2.29 [6.26] 1.73 [5.63] 4.17 [7.78] 2.64 [11.14]
Base 1.98 [6.24] 1.55 [5.82] 3.27 [7.18] 2.25 [10.38]
Diff 0.31 [0.02] 0.18 [-0.20] 0.90 [0.60] 0.39 [0.76]

SlowDC
Exp 4.21 [8.21] 3.50 [10.44] 5.79 [9.32] 6.10 [22.29]
Base 3.54 [8.04] 2.98 [10.17] 3.94 [7.36] 4.97 [19.99]
Diff 0.67 [0.17] 0.52 [0.26] 1.85 [1.97] 1.12 [2.30]

Table 7: Average retransmission percentage for ser-
vices in AvgDC and SlowDC. Each entry presents
percentage retransmission rate and the percentage
of the responses with >0 retransmissions (within
brackets).



Maps
Qtls Exp Base Diff [%]

10.0 19 27 8 [29.6]
50.0 170 176 6 [3.4]
90.0 647 659 12 [1.8]
95.0 1172 1176 4 [0.3]
96.0 1401 1396 -5 [-0.4]
97.0 1742 1719 -23 [-1.3]
99.0 3630 3550 -80 [-2.3]
99.9 10193 9800 -393 [-4.0]

Table 8: Latency quantiles (in ms) of Maps at
SlowDC.

percentage.
Table 7 summarizes the overall and per-service retrans-

mission rate for AvgDC and SlowDC. The overall increase
with init cwnd=10 in AvgDC is <0.5% and in SlowDC is
<1%. Naturally, the increase in retransmission is not uni-
form across applications, but concentrated around applica-
tions serving content on multiple concurrent TCP connec-
tions, and/or having large average response sizes. In both
cases, with a higher initial congestion window the effective
burst size transmitted is larger, resulting in increased re-
transmission rates.

We also note that overall in both AvgDC and SlowDC,
the percentage of responses experiencing retransmissions has
only increased by a small portion — an increase of 0.02% in
AvgDC and 0.17% in SlowDC.

Applications using concurrent TCP connections
Traffic patterns from applications using multiple concurrent
TCP connections with a large init cwnd represent one of
the worst-case scenarios where latency can be adversely im-
pacted by bottleneck buffer overflow. As an example, the
use of four to six connections by browsers per domain, cou-
pled with the common practice of Web sites using two sub-
domains makes the effective init cwnd between 80-120 seg-
ments for certain applications such as Google Maps. Table 6
shows that this does not cause a noticeable degradation in
AvgDC.

In SlowDC, Table 8 shows that while Maps has improved
its median latency, latencies in higher quantiles such as 96th

and above have experienced a degradation relative to the
baseline.

There is no evidence from our measurements that this la-
tency degradation is well correlated to low bandwidth sub-
nets. We conjecture that such impact is not a consequence of
low bandwidth alone, but other factors working in concert
such as the amount of buffering at a bottleneck link, and
the offered load at the link i.e., the number of simultaneous
flows multiplexed and their usage patterns.

5. CONCLUSIONS
Increasing TCP’s initial congestion window is a small change

with a significant positive impact on Web transfer latency.
While the numerous studies in literature to speed up short
transfers may be viable solutions in the future, none are
deployed or standardized today. In contrast, a far simpler
solution of increasing TCP’s initial congestion window to a
value commensurate with current network speeds and Web
page sizes is practical, easily deployable, and immediately

useful in improving Web transfer latency.
In the longer term, a larger initial congestion window will

also mitigate the need for applications to use multiple con-
current connections to increase download speed. Based on
our large scale experiments, we are pursuing efforts in the
IETF to standardize TCP’s initial congestion window to
at least ten segments. Preliminary experiments with even
higher initial windows show indications of benefiting latency
further while keeping any costs to a modest level. Future
work should focus on eliminating the initial congestion win-
dow as a manifest constant to scale to even large network
speeds and Web page sizes.
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