Tareas de enrutamiento comunes

En las siguientes secciones, se explica cómo realizar algunas tareas comunes relacionadas con la resolución de problemas de enrutamiento de vehículos.

Límites de búsqueda

Los problemas de enrutamiento de vehículos con muchas ubicaciones pueden tardar mucho tiempo en resolverse. Para tales problemas, es una buena idea establecer un límite de búsqueda, que finalice la búsqueda después de un período específico o una cantidad de soluciones mostradas.

Límites de tiempo

Los siguientes ejemplos muestran cómo establecer un límite de tiempo de 30 segundos para una búsqueda.

Python

search_parameters = pywrapcp.DefaultRoutingSearchParameters()
search_parameters.time_limit.seconds = 30

C++

RoutingSearchParameters searchParameters = DefaultRoutingSearchParameters();
searchParameters.mutable_time_limit()->set_seconds(30);

Java

Agrega la siguiente `import` al comienzo del programa:
import com.google.protobuf.Duration;
Luego, configura los parámetros de búsqueda de la siguiente manera:
RoutingSearchParameters searchParameters =
        main.defaultRoutingSearchParameters()
            .toBuilder()
            .setTimeLimit(Duration.newBuilder().setSeconds(30).build())
            .build();

C#

Agrega la siguiente línea al comienzo del programa:

using Google.Protobuf.WellKnownTypes; // Duration
Luego, configura los parámetros de búsqueda de la siguiente manera:
RoutingSearchParameters searchParameters =
  operations_research_constraint_solver.DefaultRoutingSearchParameters();
searchParameters.TimeLimit = new Duration { Seconds = 10 };

Consulta Cómo cambiar la estrategia de búsqueda para ver un ejemplo que establece un límite de tiempo.

Límites de soluciones

En los siguientes ejemplos, se muestra cómo establecer un límite de solución de 100 para una búsqueda.

Python

search_parameters = pywrapcp.DefaultRoutingSearchParameters()
search_parameters.solution_limit = 100

C++

RoutingSearchParameters searchParameters = DefaultRoutingSearchParameters();
searchParameters.set_solution_limit(100);

Java

RoutingSearchParameters searchParameters =
        main.defaultRoutingSearchParameters()
            .toBuilder()
            .setSolutionLimit(100)
            .build();

C#

RoutingSearchParameters searchParameters =
  operations_research_constraint_solver.DefaultRoutingSearchParameters();
searchParameters.SolutionLimit(100);

Para algunos problemas, es posible que desees especificar un conjunto de rutas iniciales para un VRP, en lugar de permitir que el solucionador encuentre una solución inicial. Por ejemplo, si ya encontraste una buena solución a un problema y deseas usarlo como punto de partida para resolver un problema modificado.

Para crear las rutas iniciales, sigue estos pasos:

  1. Define un arreglo que contenga las rutas iniciales.
  2. Crea la solución inicial con el método ReadAssignmentFromRoutes.

El siguiente código define las rutas iniciales en los datos.

Python

    data["initial_routes"] = [
        # fmt: off
      [8, 16, 14, 13, 12, 11],
      [3, 4, 9, 10],
      [15, 1],
      [7, 5, 2, 6],
        # fmt: on
    ]

C++

  const std::vector<std::vector<int64_t>> initial_routes{
      {8, 16, 14, 13, 12, 11},
      {3, 4, 9, 10},
      {15, 1},
      {7, 5, 2, 6},
  };

Java

    public final long[][] initialRoutes = {
        {8, 16, 14, 13, 12, 11},
        {3, 4, 9, 10},
        {15, 1},
        {7, 5, 2, 6},
    };

C#

        public long[][] InitialRoutes = {
            new long[] { 8, 16, 14, 13, 12, 11 },
            new long[] { 3, 4, 9, 10 },
            new long[] { 15, 1 },
            new long[] { 7, 5, 2, 6 },
        };

El siguiente código crea la solución inicial a partir de las rutas y, luego, realiza una búsqueda a partir de la solución inicial.

El programa muestra la solución inicial y la solución que encuentra la búsqueda.

Python

    initial_solution = routing.ReadAssignmentFromRoutes(data["initial_routes"], True)
    print("Initial solution:")
    print_solution(data, manager, routing, initial_solution)

C++

  const Assignment* initial_solution =
      routing.ReadAssignmentFromRoutes(data.initial_routes, true);
  // Print initial solution on console.
  LOG(INFO) << "Initial solution: ";
  PrintSolution(data, manager, routing, *initial_solution);

Java

    Assignment initialSolution = routing.readAssignmentFromRoutes(data.initialRoutes, true);
    logger.info("Initial solution:");
    printSolution(data, routing, manager, initialSolution);

C#

        Assignment initialSolution = routing.ReadAssignmentFromRoutes(data.InitialRoutes, true);
        // Print initial solution on console.
        Console.WriteLine("Initial solution:");
        PrintSolution(data, routing, manager, initialSolution);

Cuando agregas este código al programa VR anterior y lo ejecutas, se muestra el siguiente resultado:

Initial solution:
Route for vehicle 0:
 0 ->  8 ->  16 ->  14 ->  13 ->  12 ->  11 -> 0
Distance of the route: 2168m

Route for vehicle 1:
 0 ->  3 ->  4 ->  9 ->  10 -> 0
Distance of the route: 2464m

Route for vehicle 2:
 0 ->  15 ->  1 -> 0
Distance of the route: 2192m

Route for vehicle 3:
 0 ->  7 ->  5 ->  2 ->  6 -> 0
Distance of the route: 1780m

Maximum of the route distances: 2464m

Solution after search:

Route for vehicle 0:
 0 ->  9 ->  10 ->  16 ->  14 -> 0
Distance of the route: 1552m

Route for vehicle 1:
 0 ->  12 ->  11 ->  15 ->  13 -> 0
Distance of the route: 1552

Route for vehicle 2:
 0 ->  3 ->  4 ->  1 ->  7 -> 0
Distance of the route: 1552

Route for vehicle 3:
 0 ->  5 ->  2 ->  6 ->  8 -> 0
Distance of the route: 1552

Maximum of the route distances: 1552

Estos son los programas completos que establecen las rutas iniciales.

Python

"""Vehicles Routing Problem (VRP)."""

from ortools.constraint_solver import routing_enums_pb2
from ortools.constraint_solver import pywrapcp


def create_data_model():
    """Stores the data for the problem."""
    data = {}
    data["distance_matrix"] = [
        # fmt: off
      [0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662],
      [548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210],
      [776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754],
      [696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358],
      [582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244],
      [274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708],
      [502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480],
      [194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856],
      [308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514],
      [194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468],
      [536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354],
      [502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844],
      [388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730],
      [354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536],
      [468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194],
      [776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798],
      [662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0],
        # fmt: on
    ]
    data["initial_routes"] = [
        # fmt: off
      [8, 16, 14, 13, 12, 11],
      [3, 4, 9, 10],
      [15, 1],
      [7, 5, 2, 6],
        # fmt: on
    ]
    data["num_vehicles"] = 4
    data["depot"] = 0
    return data


def print_solution(data, manager, routing, solution):
    """Prints solution on console."""
    print(f"Objective: {solution.ObjectiveValue()}")
    max_route_distance = 0
    for vehicle_id in range(data["num_vehicles"]):
        index = routing.Start(vehicle_id)
        plan_output = f"Route for vehicle {vehicle_id}:\n"
        route_distance = 0
        while not routing.IsEnd(index):
            plan_output += f" {manager.IndexToNode(index)} -> "
            previous_index = index
            index = solution.Value(routing.NextVar(index))
            route_distance += routing.GetArcCostForVehicle(
                previous_index, index, vehicle_id
            )
        plan_output += f"{manager.IndexToNode(index)}\n"
        plan_output += f"Distance of the route: {route_distance}m\n"
        print(plan_output)
        max_route_distance = max(route_distance, max_route_distance)
    print(f"Maximum of the route distances: {max_route_distance}m")



def main():
    """Solve the CVRP problem."""
    # Instantiate the data problem.
    data = create_data_model()

    # Create the routing index manager.
    manager = pywrapcp.RoutingIndexManager(
        len(data["distance_matrix"]), data["num_vehicles"], data["depot"]
    )

    # Create Routing Model.
    routing = pywrapcp.RoutingModel(manager)

    # Create and register a transit callback.
    def distance_callback(from_index, to_index):
        """Returns the distance between the two nodes."""
        # Convert from routing variable Index to distance matrix NodeIndex.
        from_node = manager.IndexToNode(from_index)
        to_node = manager.IndexToNode(to_index)
        return data["distance_matrix"][from_node][to_node]

    transit_callback_index = routing.RegisterTransitCallback(distance_callback)

    # Define cost of each arc.
    routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)

    # Add Distance constraint.
    dimension_name = "Distance"
    routing.AddDimension(
        transit_callback_index,
        0,  # no slack
        3000,  # vehicle maximum travel distance
        True,  # start cumul to zero
        dimension_name,
    )
    distance_dimension = routing.GetDimensionOrDie(dimension_name)
    distance_dimension.SetGlobalSpanCostCoefficient(100)

    # Close model with the custom search parameters.
    search_parameters = pywrapcp.DefaultRoutingSearchParameters()
    search_parameters.first_solution_strategy = (
        routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC
    )
    search_parameters.local_search_metaheuristic = (
        routing_enums_pb2.LocalSearchMetaheuristic.GUIDED_LOCAL_SEARCH
    )
    search_parameters.time_limit.FromSeconds(5)
    # When an initial solution is given for search, the model will be closed with
    # the default search parameters unless it is explicitly closed with the custom
    # search parameters.
    routing.CloseModelWithParameters(search_parameters)

    # Get initial solution from routes after closing the model.
    initial_solution = routing.ReadAssignmentFromRoutes(data["initial_routes"], True)
    print("Initial solution:")
    print_solution(data, manager, routing, initial_solution)

    # Solve the problem.
    solution = routing.SolveFromAssignmentWithParameters(
        initial_solution, search_parameters
    )

    # Print solution on console.
    if solution:
        print("Solution after search:")
        print_solution(data, manager, routing, solution)


if __name__ == "__main__":
    main()

C++

#include <algorithm>
#include <cstdint>
#include <cstdlib>
#include <sstream>
#include <vector>

#include "google/protobuf/duration.pb.h"
#include "ortools/base/logging.h"
#include "ortools/constraint_solver/constraint_solver.h"
#include "ortools/constraint_solver/routing.h"
#include "ortools/constraint_solver/routing_enums.pb.h"
#include "ortools/constraint_solver/routing_index_manager.h"
#include "ortools/constraint_solver/routing_parameters.h"

namespace operations_research {
struct DataModel {
  const std::vector<std::vector<int64_t>> distance_matrix{
      {0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468,
       776, 662},
      {548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674,
       1016, 868, 1210},
      {776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130,
       788, 1552, 754},
      {696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822,
       1164, 560, 1358},
      {582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708,
       1050, 674, 1244},
      {274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514,
       1050, 708},
      {502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514,
       1278, 480},
      {194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662,
       742, 856},
      {308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320,
       1084, 514},
      {194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274,
       810, 468},
      {536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730,
       388, 1152, 354},
      {502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308,
       650, 274, 844},
      {388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536,
       388, 730},
      {354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342,
       422, 536},
      {468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342,
       0, 764, 194},
      {776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388,
       422, 764, 0, 798},
      {662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536,
       194, 798, 0},
  };
  const std::vector<std::vector<int64_t>> initial_routes{
      {8, 16, 14, 13, 12, 11},
      {3, 4, 9, 10},
      {15, 1},
      {7, 5, 2, 6},
  };
  const int num_vehicles = 4;
  const RoutingIndexManager::NodeIndex depot{0};
};

//! @brief Print the solution.
//! @param[in] data Data of the problem.
//! @param[in] manager Index manager used.
//! @param[in] routing Routing solver used.
//! @param[in] solution Solution found by the solver.
void PrintSolution(const DataModel& data, const RoutingIndexManager& manager,
                   const RoutingModel& routing, const Assignment& solution) {
  int64_t max_route_distance{0};
  for (int vehicle_id = 0; vehicle_id < data.num_vehicles; ++vehicle_id) {
    int64_t index = routing.Start(vehicle_id);
    LOG(INFO) << "Route for Vehicle " << vehicle_id << ":";
    int64_t route_distance{0};
    std::stringstream route;
    while (!routing.IsEnd(index)) {
      route << manager.IndexToNode(index).value() << " -> ";
      const int64_t previous_index = index;
      index = solution.Value(routing.NextVar(index));
      route_distance += routing.GetArcCostForVehicle(previous_index, index,
                                                     int64_t{vehicle_id});
    }
    LOG(INFO) << route.str() << manager.IndexToNode(index).value();
    LOG(INFO) << "Distance of the route: " << route_distance << "m";
    max_route_distance = std::max(route_distance, max_route_distance);
  }
  LOG(INFO) << "Maximum of the route distances: " << max_route_distance << "m";
  LOG(INFO) << "";
  LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms";
}

void VrpInitialRoutes() {
  // Instantiate the data problem.
  DataModel data;

  // Create Routing Index Manager
  RoutingIndexManager manager(data.distance_matrix.size(), data.num_vehicles,
                              data.depot);

  // Create Routing Model.
  RoutingModel routing(manager);

  // Create and register a transit callback.
  const int transit_callback_index = routing.RegisterTransitCallback(
      [&data, &manager](const int64_t from_index,
                        const int64_t to_index) -> int64_t {
        // Convert from routing variable Index to distance matrix NodeIndex.
        const int from_node = manager.IndexToNode(from_index).value();
        const int to_node = manager.IndexToNode(to_index).value();
        return data.distance_matrix[from_node][to_node];
      });

  // Define cost of each arc.
  routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index);

  // Add Distance constraint.
  routing.AddDimension(transit_callback_index, 0, 3000,
                       true,  // start cumul to zero
                       "Distance");
  routing.GetMutableDimension("Distance")->SetGlobalSpanCostCoefficient(100);

  // Close model with the custom search parameters
  RoutingSearchParameters searchParameters = DefaultRoutingSearchParameters();
  searchParameters.set_first_solution_strategy(
      FirstSolutionStrategy::PATH_CHEAPEST_ARC);
  searchParameters.set_local_search_metaheuristic(
      LocalSearchMetaheuristic::GUIDED_LOCAL_SEARCH);
  searchParameters.mutable_time_limit()->set_seconds(5);
  // When an initial solution is given for search, the model will be closed with
  // the default search parameters unless it is explicitly closed with the
  // custom search parameters.
  routing.CloseModelWithParameters(searchParameters);

  // Get initial solution from routes after closing the model.
  const Assignment* initial_solution =
      routing.ReadAssignmentFromRoutes(data.initial_routes, true);
  // Print initial solution on console.
  LOG(INFO) << "Initial solution: ";
  PrintSolution(data, manager, routing, *initial_solution);

  // Solve from initial solution.
  const Assignment* solution = routing.SolveFromAssignmentWithParameters(
      initial_solution, searchParameters);

  // Print solution on console.
  LOG(INFO) << "";
  LOG(INFO) << "Solution from search: ";
  PrintSolution(data, manager, routing, *solution);
}
}  // namespace operations_research

int main(int /*argc*/, char* /*argv*/[]) {
  operations_research::VrpInitialRoutes();
  return EXIT_SUCCESS;
}

Java

package com.google.ortools.constraintsolver.samples;
import com.google.ortools.Loader;
import com.google.ortools.constraintsolver.Assignment;
import com.google.ortools.constraintsolver.RoutingDimension;
import com.google.ortools.constraintsolver.RoutingIndexManager;
import com.google.ortools.constraintsolver.RoutingModel;
import com.google.ortools.constraintsolver.RoutingSearchParameters;
import com.google.ortools.constraintsolver.main;
import java.util.logging.Logger;

/** Minimal VRP. */
public class VrpInitialRoutes {
  private static final Logger logger = Logger.getLogger(VrpInitialRoutes.class.getName());

  static class DataModel {
    public final long[][] distanceMatrix = {
        {0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662},
        {548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210},
        {776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754},
        {696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358},
        {582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244},
        {274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708},
        {502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480},
        {194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856},
        {308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514},
        {194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468},
        {536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354},
        {502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844},
        {388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730},
        {354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536},
        {468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194},
        {776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798},
        {662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0},
    };
    public final long[][] initialRoutes = {
        {8, 16, 14, 13, 12, 11},
        {3, 4, 9, 10},
        {15, 1},
        {7, 5, 2, 6},
    };
    public final int vehicleNumber = 4;
    public final int depot = 0;
  }

  /// @brief Print the solution.
  static void printSolution(
      DataModel data, RoutingModel routing, RoutingIndexManager manager, Assignment solution) {
    // Solution cost.
    logger.info("Objective : " + solution.objectiveValue());
    // Inspect solution.
    long maxRouteDistance = 0;
    for (int i = 0; i < data.vehicleNumber; ++i) {
      long index = routing.start(i);
      logger.info("Route for Vehicle " + i + ":");
      long routeDistance = 0;
      String route = "";
      while (!routing.isEnd(index)) {
        route += manager.indexToNode(index) + " -> ";
        long previousIndex = index;
        index = solution.value(routing.nextVar(index));
        routeDistance += routing.getArcCostForVehicle(previousIndex, index, i);
      }
      logger.info(route + manager.indexToNode(index));
      logger.info("Distance of the route: " + routeDistance + "m");
      maxRouteDistance = Math.max(routeDistance, maxRouteDistance);
    }
    logger.info("Maximum of the route distances: " + maxRouteDistance + "m");
  }

  public static void main(String[] args) throws Exception {
    Loader.loadNativeLibraries();
    // Instantiate the data problem.
    final DataModel data = new DataModel();

    // Create Routing Index Manager
    RoutingIndexManager manager =
        new RoutingIndexManager(data.distanceMatrix.length, data.vehicleNumber, data.depot);

    // Create Routing Model.
    RoutingModel routing = new RoutingModel(manager);

    // Create and register a transit callback.
    final int transitCallbackIndex =
        routing.registerTransitCallback((long fromIndex, long toIndex) -> {
          // Convert from routing variable Index to user NodeIndex.
          int fromNode = manager.indexToNode(fromIndex);
          int toNode = manager.indexToNode(toIndex);
          return data.distanceMatrix[fromNode][toNode];
        });

    // Define cost of each arc.
    routing.setArcCostEvaluatorOfAllVehicles(transitCallbackIndex);

    // Add Distance constraint.
    routing.addDimension(transitCallbackIndex, 0, 3000,
        true, // start cumul to zero
        "Distance");
    RoutingDimension distanceDimension = routing.getMutableDimension("Distance");
    distanceDimension.setGlobalSpanCostCoefficient(100);

    Assignment initialSolution = routing.readAssignmentFromRoutes(data.initialRoutes, true);
    logger.info("Initial solution:");
    printSolution(data, routing, manager, initialSolution);

    // Setting first solution heuristic.
    RoutingSearchParameters searchParameters = main.defaultRoutingSearchParameters();

    // Solve the problem.
    Assignment solution = routing.solveWithParameters(searchParameters);

    // Print solution on console.
    logger.info("Solution after search:");
    printSolution(data, routing, manager, solution);
  }
}

C#

// Copyright 2010-2022 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

using System;
using System.Collections.Generic;
using Google.OrTools.ConstraintSolver;

/// <summary>
///   VRP with initial routes.
/// </summary>
public class InitialRoutes
{
    class DataModel
    {
        public long[,] DistanceMatrix = {
            { 0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662 },
            { 548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210 },
            { 776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754 },
            { 696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358 },
            { 582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244 },
            { 274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708 },
            { 502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480 },
            { 194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856 },
            { 308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514 },
            { 194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468 },
            { 536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354 },
            { 502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844 },
            { 388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730 },
            { 354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536 },
            { 468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194 },
            { 776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798 },
            { 662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0 },
        };
        public long[][] InitialRoutes = {
            new long[] { 8, 16, 14, 13, 12, 11 },
            new long[] { 3, 4, 9, 10 },
            new long[] { 15, 1 },
            new long[] { 7, 5, 2, 6 },
        };
        public int VehicleNumber = 4;
        public int Depot = 0;
    };

    /// <summary>
    ///   Print the solution.
    /// </summary>
    static void PrintSolution(in DataModel data, in RoutingModel routing, in RoutingIndexManager manager,
                              in Assignment solution)
    {
        Console.WriteLine($"Objective {solution.ObjectiveValue()}:");

        // Inspect solution.
        long maxRouteDistance = 0;
        for (int i = 0; i < data.VehicleNumber; ++i)
        {
            Console.WriteLine("Route for Vehicle {0}:", i);
            long routeDistance = 0;
            var index = routing.Start(i);
            while (routing.IsEnd(index) == false)
            {
                Console.Write("{0} -> ", manager.IndexToNode((int)index));
                var previousIndex = index;
                index = solution.Value(routing.NextVar(index));
                routeDistance += routing.GetArcCostForVehicle(previousIndex, index, 0);
            }
            Console.WriteLine("{0}", manager.IndexToNode((int)index));
            Console.WriteLine("Distance of the route: {0}", routeDistance);
            maxRouteDistance = Math.Max(routeDistance, maxRouteDistance);
        }
        Console.WriteLine("Maximum distance of the routes: {0}", maxRouteDistance);
    }

    public static void Main(String[] args)
    {
        // Instantiate the data problem.
        DataModel data = new DataModel();

        // Create Routing Index Manager
        RoutingIndexManager manager =
            new RoutingIndexManager(data.DistanceMatrix.GetLength(0), data.VehicleNumber, data.Depot);

        // Create Routing Model.
        RoutingModel routing = new RoutingModel(manager);

        // Create and register a transit callback.
        int transitCallbackIndex = routing.RegisterTransitCallback((long fromIndex, long toIndex) =>
                                                                   {
                                                                       // Convert from routing variable Index to
                                                                       // distance matrix NodeIndex.
                                                                       var fromNode = manager.IndexToNode(fromIndex);
                                                                       var toNode = manager.IndexToNode(toIndex);
                                                                       return data.DistanceMatrix[fromNode, toNode];
                                                                   });

        // Define cost of each arc.
        routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex);

        // Add Distance constraint.
        routing.AddDimension(transitCallbackIndex, 0, 3000,
                             true, // start cumul to zero
                             "Distance");
        RoutingDimension distanceDimension = routing.GetMutableDimension("Distance");
        distanceDimension.SetGlobalSpanCostCoefficient(100);

        // Get initial solution from routes.
        Assignment initialSolution = routing.ReadAssignmentFromRoutes(data.InitialRoutes, true);
        // Print initial solution on console.
        Console.WriteLine("Initial solution:");
        PrintSolution(data, routing, manager, initialSolution);

        // Setting first solution heuristic.
        RoutingSearchParameters searchParameters =
            operations_research_constraint_solver.DefaultRoutingSearchParameters();

        // Solve the problem.
        Assignment solution = routing.SolveWithParameters(searchParameters);

        // Print solution on console.
        Console.WriteLine("Solution after search:");
        PrintSolution(data, routing, manager, solution);
    }
}

Cómo establecer las ubicaciones de partida y destino para las rutas

Hasta ahora, hemos supuesto que todos los vehículos comienzan y terminan en una sola ubicación, el depósito. También puedes establecer ubicaciones de inicio y finalización diferentes para cada vehículo en el problema. Para hacerlo, pasa dos vectores, que contengan los índices de las ubicaciones de inicio y finalización, como entradas para el método RoutingModel en la función principal. A continuación, se explica cómo crear los vectores de inicio y finalización en la sección de datos del programa:

Python

    data["starts"] = [1, 2, 15, 16]
    data["ends"] = [0, 0, 0, 0]

C++

  const std::vector<RoutingIndexManager::NodeIndex> starts{
      RoutingIndexManager::NodeIndex{1},
      RoutingIndexManager::NodeIndex{2},
      RoutingIndexManager::NodeIndex{15},
      RoutingIndexManager::NodeIndex{16},
  };
  const std::vector<RoutingIndexManager::NodeIndex> ends{
      RoutingIndexManager::NodeIndex{0},
      RoutingIndexManager::NodeIndex{0},
      RoutingIndexManager::NodeIndex{0},
      RoutingIndexManager::NodeIndex{0},
  };

Java

    public final int[] starts = {1, 2, 15, 16};
    public final int[] ends = {0, 0, 0, 0};

C#

        public int[] Starts = { 1, 2, 15, 16 };
        public int[] Ends = { 0, 0, 0, 0 };

Estos son los programas completos que establecen las ubicaciones de inicio y finalización de esta manera.

Python

"""Simple Vehicles Routing Problem."""

from ortools.constraint_solver import routing_enums_pb2
from ortools.constraint_solver import pywrapcp


def create_data_model():
    """Stores the data for the problem."""
    data = {}
    data["distance_matrix"] = [
        # fmt: off
      [0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662],
      [548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210],
      [776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754],
      [696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358],
      [582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244],
      [274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708],
      [502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480],
      [194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856],
      [308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514],
      [194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468],
      [536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354],
      [502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844],
      [388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730],
      [354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536],
      [468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194],
      [776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798],
      [662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0],
        # fmt: on
    ]
    data["num_vehicles"] = 4
    data["starts"] = [1, 2, 15, 16]
    data["ends"] = [0, 0, 0, 0]
    return data


def print_solution(data, manager, routing, solution):
    """Prints solution on console."""
    print(f"Objective: {solution.ObjectiveValue()}")
    max_route_distance = 0
    for vehicle_id in range(data["num_vehicles"]):
        index = routing.Start(vehicle_id)
        plan_output = f"Route for vehicle {vehicle_id}:\n"
        route_distance = 0
        while not routing.IsEnd(index):
            plan_output += f" {manager.IndexToNode(index)} -> "
            previous_index = index
            index = solution.Value(routing.NextVar(index))
            route_distance += routing.GetArcCostForVehicle(
                previous_index, index, vehicle_id
            )
        plan_output += f"{manager.IndexToNode(index)}\n"
        plan_output += f"Distance of the route: {route_distance}m\n"
        print(plan_output)
        max_route_distance = max(route_distance, max_route_distance)
    print(f"Maximum of the route distances: {max_route_distance}m")


def main():
    """Entry point of the program."""
    # Instantiate the data problem.
    data = create_data_model()

    # Create the routing index manager.
    manager = pywrapcp.RoutingIndexManager(
        len(data["distance_matrix"]), data["num_vehicles"], data["starts"], data["ends"]
    )

    # Create Routing Model.
    routing = pywrapcp.RoutingModel(manager)

    # Create and register a transit callback.
    def distance_callback(from_index, to_index):
        """Returns the distance between the two nodes."""
        # Convert from routing variable Index to distance matrix NodeIndex.
        from_node = manager.IndexToNode(from_index)
        to_node = manager.IndexToNode(to_index)
        return data["distance_matrix"][from_node][to_node]

    transit_callback_index = routing.RegisterTransitCallback(distance_callback)

    # Define cost of each arc.
    routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)

    # Add Distance constraint.
    dimension_name = "Distance"
    routing.AddDimension(
        transit_callback_index,
        0,  # no slack
        2000,  # vehicle maximum travel distance
        True,  # start cumul to zero
        dimension_name,
    )
    distance_dimension = routing.GetDimensionOrDie(dimension_name)
    distance_dimension.SetGlobalSpanCostCoefficient(100)

    # Setting first solution heuristic.
    search_parameters = pywrapcp.DefaultRoutingSearchParameters()
    search_parameters.first_solution_strategy = (
        routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC
    )

    # Solve the problem.
    solution = routing.SolveWithParameters(search_parameters)

    # Print solution on console.
    if solution:
        print_solution(data, manager, routing, solution)


if __name__ == "__main__":
    main()

C++

#include <algorithm>
#include <cstdint>
#include <sstream>
#include <vector>

#include "ortools/constraint_solver/routing.h"
#include "ortools/constraint_solver/routing_enums.pb.h"
#include "ortools/constraint_solver/routing_index_manager.h"
#include "ortools/constraint_solver/routing_parameters.h"

namespace operations_research {
struct DataModel {
  const std::vector<std::vector<int64_t>> distance_matrix{
      {0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468,
       776, 662},
      {548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674,
       1016, 868, 1210},
      {776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130,
       788, 1552, 754},
      {696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822,
       1164, 560, 1358},
      {582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708,
       1050, 674, 1244},
      {274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514,
       1050, 708},
      {502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514,
       1278, 480},
      {194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662,
       742, 856},
      {308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320,
       1084, 514},
      {194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274,
       810, 468},
      {536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730,
       388, 1152, 354},
      {502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308,
       650, 274, 844},
      {388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536,
       388, 730},
      {354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342,
       422, 536},
      {468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342,
       0, 764, 194},
      {776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388,
       422, 764, 0, 798},
      {662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536,
       194, 798, 0},
  };
  const int num_vehicles = 4;
  const std::vector<RoutingIndexManager::NodeIndex> starts{
      RoutingIndexManager::NodeIndex{1},
      RoutingIndexManager::NodeIndex{2},
      RoutingIndexManager::NodeIndex{15},
      RoutingIndexManager::NodeIndex{16},
  };
  const std::vector<RoutingIndexManager::NodeIndex> ends{
      RoutingIndexManager::NodeIndex{0},
      RoutingIndexManager::NodeIndex{0},
      RoutingIndexManager::NodeIndex{0},
      RoutingIndexManager::NodeIndex{0},
  };
};

//! @brief Print the solution.
//! @param[in] data Data of the problem.
//! @param[in] manager Index manager used.
//! @param[in] routing Routing solver used.
//! @param[in] solution Solution found by the solver.
void PrintSolution(const DataModel& data, const RoutingIndexManager& manager,
                   const RoutingModel& routing, const Assignment& solution) {
  int64_t max_route_distance{0};
  for (int vehicle_id = 0; vehicle_id < data.num_vehicles; ++vehicle_id) {
    int64_t index = routing.Start(vehicle_id);
    LOG(INFO) << "Route for Vehicle " << vehicle_id << ":";
    int64_t route_distance{0};
    std::stringstream route;
    while (!routing.IsEnd(index)) {
      route << manager.IndexToNode(index).value() << " -> ";
      const int64_t previous_index = index;
      index = solution.Value(routing.NextVar(index));
      route_distance += routing.GetArcCostForVehicle(previous_index, index,
                                                     int64_t{vehicle_id});
    }
    LOG(INFO) << route.str() << manager.IndexToNode(index).value();
    LOG(INFO) << "Distance of the route: " << route_distance << "m";
    max_route_distance = std::max(route_distance, max_route_distance);
  }
  LOG(INFO) << "Maximum of the route distances: " << max_route_distance << "m";
  LOG(INFO) << "";
  LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms";
}

void VrpStartsEnds() {
  // Instantiate the data problem.
  DataModel data;

  // Create Routing Index Manager
  RoutingIndexManager manager(data.distance_matrix.size(), data.num_vehicles,
                              data.starts, data.ends);

  // Create Routing Model.
  RoutingModel routing(manager);

  // Create and register a transit callback.
  const int transit_callback_index = routing.RegisterTransitCallback(
      [&data, &manager](const int64_t from_index,
                        const int64_t to_index) -> int64_t {
        // Convert from routing variable Index to distance matrix NodeIndex.
        const int from_node = manager.IndexToNode(from_index).value();
        const int to_node = manager.IndexToNode(to_index).value();
        return data.distance_matrix[from_node][to_node];
      });

  // Define cost of each arc.
  routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index);

  // Add Distance constraint.
  routing.AddDimension(transit_callback_index, 0, 2000,
                       /*fix_start_cumul_to_zero=*/true, "Distance");
  routing.GetMutableDimension("Distance")->SetGlobalSpanCostCoefficient(100);

  // Setting first solution heuristic.
  RoutingSearchParameters searchParameters = DefaultRoutingSearchParameters();
  searchParameters.set_first_solution_strategy(
      FirstSolutionStrategy::PATH_CHEAPEST_ARC);

  // Solve the problem.
  const Assignment* solution = routing.SolveWithParameters(searchParameters);

  // Print solution on console.
  PrintSolution(data, manager, routing, *solution);
}
}  // namespace operations_research

int main(int /*argc*/, char* /*argv*/[]) {
  operations_research::VrpStartsEnds();
  return EXIT_SUCCESS;
}

Java

package com.google.ortools.constraintsolver.samples;
import com.google.ortools.Loader;
import com.google.ortools.constraintsolver.Assignment;
import com.google.ortools.constraintsolver.FirstSolutionStrategy;
import com.google.ortools.constraintsolver.RoutingDimension;
import com.google.ortools.constraintsolver.RoutingIndexManager;
import com.google.ortools.constraintsolver.RoutingModel;
import com.google.ortools.constraintsolver.RoutingSearchParameters;
import com.google.ortools.constraintsolver.main;
import java.util.logging.Logger;

/** Minimal VRP.*/
public class VrpStartsEnds {
  private static final Logger logger = Logger.getLogger(VrpStartsEnds.class.getName());

  static class DataModel {
    public final long[][] distanceMatrix = {
        {0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662},
        {548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210},
        {776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754},
        {696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358},
        {582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244},
        {274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708},
        {502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480},
        {194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856},
        {308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514},
        {194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468},
        {536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354},
        {502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844},
        {388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730},
        {354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536},
        {468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194},
        {776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798},
        {662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0},
    };
    public final int vehicleNumber = 4;
    public final int[] starts = {1, 2, 15, 16};
    public final int[] ends = {0, 0, 0, 0};
  }

  /// @brief Print the solution.
  static void printSolution(
      DataModel data, RoutingModel routing, RoutingIndexManager manager, Assignment solution) {
    // Solution cost.
    logger.info("Objective : " + solution.objectiveValue());
    // Inspect solution.
    long maxRouteDistance = 0;
    for (int i = 0; i < data.vehicleNumber; ++i) {
      long index = routing.start(i);
      logger.info("Route for Vehicle " + i + ":");
      long routeDistance = 0;
      String route = "";
      while (!routing.isEnd(index)) {
        route += manager.indexToNode(index) + " -> ";
        long previousIndex = index;
        index = solution.value(routing.nextVar(index));
        routeDistance += routing.getArcCostForVehicle(previousIndex, index, i);
      }
      logger.info(route + manager.indexToNode(index));
      logger.info("Distance of the route: " + routeDistance + "m");
      maxRouteDistance = Math.max(routeDistance, maxRouteDistance);
    }
    logger.info("Maximum of the route distances: " + maxRouteDistance + "m");
  }

  public static void main(String[] args) throws Exception {
    Loader.loadNativeLibraries();
    // Instantiate the data problem.
    final DataModel data = new DataModel();

    // Create Routing Index Manager
    RoutingIndexManager manager = new RoutingIndexManager(
        data.distanceMatrix.length, data.vehicleNumber, data.starts, data.ends);

    // Create Routing Model.
    RoutingModel routing = new RoutingModel(manager);

    // Create and register a transit callback.
    final int transitCallbackIndex =
        routing.registerTransitCallback((long fromIndex, long toIndex) -> {
          // Convert from routing variable Index to user NodeIndex.
          int fromNode = manager.indexToNode(fromIndex);
          int toNode = manager.indexToNode(toIndex);
          return data.distanceMatrix[fromNode][toNode];
        });

    // Define cost of each arc.
    routing.setArcCostEvaluatorOfAllVehicles(transitCallbackIndex);

    // Add Distance constraint.
    routing.addDimension(transitCallbackIndex, 0, 2000,
        true, // start cumul to zero
        "Distance");
    RoutingDimension distanceDimension = routing.getMutableDimension("Distance");
    distanceDimension.setGlobalSpanCostCoefficient(100);

    // Setting first solution heuristic.
    RoutingSearchParameters searchParameters =
        main.defaultRoutingSearchParameters()
            .toBuilder()
            .setFirstSolutionStrategy(FirstSolutionStrategy.Value.PATH_CHEAPEST_ARC)
            .build();

    // Solve the problem.
    Assignment solution = routing.solveWithParameters(searchParameters);

    // Print solution on console.
    printSolution(data, routing, manager, solution);
  }
}

C#

using System;
using System.Collections.Generic;
using Google.OrTools.ConstraintSolver;

/// <summary>
///   Minimal TSP using distance matrix.
/// </summary>
public class VrpStartsEnds
{
    class DataModel
    {
        public long[,] DistanceMatrix = {
            { 0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662 },
            { 548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210 },
            { 776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754 },
            { 696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358 },
            { 582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244 },
            { 274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708 },
            { 502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480 },
            { 194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856 },
            { 308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514 },
            { 194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468 },
            { 536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354 },
            { 502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844 },
            { 388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730 },
            { 354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536 },
            { 468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194 },
            { 776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798 },
            { 662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0 }
        };
        public int VehicleNumber = 4;
        public int[] Starts = { 1, 2, 15, 16 };
        public int[] Ends = { 0, 0, 0, 0 };
    };

    /// <summary>
    ///   Print the solution.
    /// </summary>
    static void PrintSolution(in DataModel data, in RoutingModel routing, in RoutingIndexManager manager,
                              in Assignment solution)
    {
        Console.WriteLine($"Objective {solution.ObjectiveValue()}:");

        // Inspect solution.
        long maxRouteDistance = 0;
        for (int i = 0; i < data.VehicleNumber; ++i)
        {
            Console.WriteLine("Route for Vehicle {0}:", i);
            long routeDistance = 0;
            var index = routing.Start(i);
            while (routing.IsEnd(index) == false)
            {
                Console.Write("{0} -> ", manager.IndexToNode((int)index));
                var previousIndex = index;
                index = solution.Value(routing.NextVar(index));
                routeDistance += routing.GetArcCostForVehicle(previousIndex, index, 0);
            }
            Console.WriteLine("{0}", manager.IndexToNode((int)index));
            Console.WriteLine("Distance of the route: {0}m", routeDistance);
            maxRouteDistance = Math.Max(routeDistance, maxRouteDistance);
        }
        Console.WriteLine("Maximum distance of the routes: {0}m", maxRouteDistance);
    }

    public static void Main(String[] args)
    {
        // Instantiate the data problem.
        DataModel data = new DataModel();

        // Create Routing Index Manager
        RoutingIndexManager manager =
            new RoutingIndexManager(data.DistanceMatrix.GetLength(0), data.VehicleNumber, data.Starts, data.Ends);

        // Create Routing Model.
        RoutingModel routing = new RoutingModel(manager);

        // Create and register a transit callback.
        int transitCallbackIndex = routing.RegisterTransitCallback((long fromIndex, long toIndex) =>
                                                                   {
                                                                       // Convert from routing variable Index to
                                                                       // distance matrix NodeIndex.
                                                                       var fromNode = manager.IndexToNode(fromIndex);
                                                                       var toNode = manager.IndexToNode(toIndex);
                                                                       return data.DistanceMatrix[fromNode, toNode];
                                                                   });

        // Define cost of each arc.
        routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex);

        // Add Distance constraint.
        routing.AddDimension(transitCallbackIndex, 0, 2000,
                             true, // start cumul to zero
                             "Distance");
        RoutingDimension distanceDimension = routing.GetMutableDimension("Distance");
        distanceDimension.SetGlobalSpanCostCoefficient(100);

        // Setting first solution heuristic.
        RoutingSearchParameters searchParameters =
            operations_research_constraint_solver.DefaultRoutingSearchParameters();
        searchParameters.FirstSolutionStrategy = FirstSolutionStrategy.Types.Value.PathCheapestArc;

        // Solve the problem.
        Assignment solution = routing.SolveWithParameters(searchParameters);

        // Print solution on console.
        PrintSolution(data, routing, manager, solution);
    }
}

Cuando ejecutas un programa, obtienes el siguiente resultado, en el que las rutas comienzan y terminan en las ubicaciones especificadas:

Route for vehicle 0:
 1 -> 4 -> 3 -> 7 -> 0
Distance of the route: 1004m

Route for vehicle 1:
 2 -> 6 -> 8 -> 5 -> 0
Distance of the route: 936m

Route for vehicle 2:
 15 -> 11 -> 12 -> 13 -> 0
Distance of the route: 936m

Route for vehicle 3:
 16 -> 14 -> 10 -> 9 -> 0
Distance of the route: 1118m

Total distance of all routes: 3994m

La distancia total es más corta que en el ejemplo anterior porque no es necesario que los vehículos comiencen o terminen en el depósito.

Permitir ubicaciones de inicio y finalización arbitrarias

En otras versiones del problema de enrutamiento del vehículo, los vehículos pueden comenzar y finalizar en ubicaciones arbitrarias. Para configurar el problema de esta manera, simplemente modifica la matriz de distancia, de manera que la distancia desde el depósito hasta cualquier otra ubicación sea 0. Para ello, establece la primera fila y columna de la matriz en cero. Esto convierte el depósito en una ubicación ficticia que no tiene efecto en las rutas óptimas.

Aquí tienes un ejemplo en el que se modificó la matriz de distancia del ejemplo de VRP para que la distancia desde el depósito hasta todos los demás nodos sea 0.

data['distance_matrix'] = [
        [
            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
        ],
        [
            0, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674,
            1016, 868, 1210
        ],
        [
            0, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164,
            1130, 788, 1552, 754
        ],
        [
            0, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822,
            1164, 560, 1358
        ],
        [
            0, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708,
            1050, 674, 1244
        ],
        [
            0, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628,
            514, 1050, 708
        ],
        [
            0, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856,
            514, 1278, 480
        ],
        [
            0, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320,
            662, 742, 856
        ],
        [
            0, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662,
            0, 1084, 514
        ],
        [
            0, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388,
            0, 810, 468
        ],
        [
            0, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764,
            730, 388, 1152, 354
        ],
        [
            0, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114,
            308, 650, 274, 844
        ],
        [
            0, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194,
            536, 388, 730
        ],
        [
            0, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0,
            342, 422, 536
        ],
        [
            0, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536,
            342, 0, 764, 194
        ],
        [
            0, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274,
            388, 422, 764, 0, 798
        ],
        [
            0, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730,
            536, 194, 798, 0
        ],
    ]

Cuando ejecutas el programa VRP con la matriz de distancia modificada (y modificas la impresora de solución para omitir el depósito), el programa muestra las siguientes rutas:

Route for vehicle 0:
 5  -> 8 -> 6 -> 2
Distance of the route: 662m

Route for vehicle 1:
 7  -> 1 -> 4 -> 3
Distance of the route: 662m

Route for vehicle 2:
 16  -> 14 -> 13 -> 15
Distance of the route: 958m

Route for vehicle 3:
 10  -> 9 -> 12 -> 11
Distance of the route: 878m
Maximum of the route distances: 958m