The MediaPipe Text Embedder task lets you embed text into high-dimensional feature vectors representing its semantic meaning. These instructions show you how to use the Text Embedder with the C++ language.
For more information about the capabilities, models, and configuration options of this task, see the Overview.
Setup
This section describes key steps for setting up your development environment and
code projects specifically to use Text Embedder. In google3, to use the
MediaPipe Text Embedder task API, make your C++ targets depend on
//third_party/mediapipe/tasks/cc/text/text_embedder
in your BUILD file.
The MediaPipe Text Embedder task requires a trained model that is compatible with this
task. For more information on available trained models for Text Embedder. You
can download the recommended
MobileBERT-embedding
model and store it within your project directory. Specify the path of the model
using the model_asset_path
parameter in the base options. For more information
on available models, see the Models section.
Create the task
The MediaPipe Text Embedder task uses the TextEmbedder::Create
function to set up the
task. The TextEmbedder::Create
function accepts values for configuration
options to set the embedder options. For more information on configuration
options, see Configuration options.
The following code demonstrates how to build and configure this task.
#include "third_party/mediapipe/tasks/cc/text/text_embedder/text_embedder.h"
using ::mediapipe::tasks::text::text_embedder::TextEmbedder;
using ::mediapipe::tasks::text::text_embedder::TextEmbedderOptions;
// For creating a text embedder instance:
auto options = std::make_unique<TextEmbedderOptions>();
options->base_options.model_asset_path = model_path;
options->embedder_options.quantize = true;
ASSIGN_OR_RETURN(
std::unique_ptr<TextEmbedder> text_embedder,
TextEmbedder::Create(std::move(options)));
Configuration options
This task has the following configuration options for C++ applications:
Option Name | Description | Value Range | Default Value |
---|---|---|---|
embedder_options.l2_normalize |
Whether to normalize the returned feature vector with L2 norm. Use this option only if the model does not already contain a native L2_NORMALIZATION TFLite Op. In most cases, this is already the case and L2 normalization is thus achieved through TFLite inference with no need for this option. | Boolean |
False |
embedder_options.quantize |
Whether the returned embedding should be quantized to bytes via scalar quantization. Embeddings are implicitly assumed to be unit-norm and therefore any dimension is guaranteed to have a value in [-1.0, 1.0]. Use the embedder_options.l2_normalize option if this is not the case. | Boolean |
False |
Prepare data
Text Embedder works with text (std::string
) data. The task handles the data
input preprocessing, including tokenization and tensor preprocessing.
All preprocessing is handled within the Embed
function. There is no need
for additional preprocessing of the input text beforehand.
std::string input_text = "The input text that will be embedded.";
Run the task
The Text Embedder uses the Embed
function to trigger inferences. For text
embedding, this means returning the embedding vectors for the input text.
The following code demonstrates how execute the processing with the task model.
using ::mediapipe::tasks::text::text_embedder::TextEmbedderResult;
ASSERT_OK_AND_ASSIGN(TextEmbedderResult embedding_result,
text_embedder->Embed(input_text));
Handle and display results
The Text Embedder outputs a TextEmbedderResult
that contains a list of
embeddings (either floating-point or scalar-quantized) for the input text.
The following shows an example of the output data from this task:
TextEmbedderResult:
Embedding #0 (sole embedding head):
float_embedding: {0.2345f, 0.1234f, ..., 0.6789f}
head_index: 0
You can compare the semantic similarity of two embeddings using the
TextEmbedder::CosineSimilarity
function. See the following code for an
example.
// Compute cosine similarity.
ASSERT_OK_AND_ASSIGN(
double similarity,
TextEmbedder::CosineSimilarity(embedding_result.embeddings[0],
other_embedding_result.embeddings[0]));