[[["เข้าใจง่าย","easyToUnderstand","thumb-up"],["แก้ปัญหาของฉันได้","solvedMyProblem","thumb-up"],["อื่นๆ","otherUp","thumb-up"]],[["ไม่มีข้อมูลที่ฉันต้องการ","missingTheInformationINeed","thumb-down"],["ซับซ้อนเกินไป/มีหลายขั้นตอนมากเกินไป","tooComplicatedTooManySteps","thumb-down"],["ล้าสมัย","outOfDate","thumb-down"],["ปัญหาเกี่ยวกับการแปล","translationIssue","thumb-down"],["ตัวอย่าง/ปัญหาเกี่ยวกับโค้ด","samplesCodeIssue","thumb-down"],["อื่นๆ","otherDown","thumb-down"]],["อัปเดตล่าสุด 2024-04-18 UTC"],[[["Decision forests are interpretable machine learning algorithms that work well with tabular data for tasks like classification, regression, and ranking."],["Decision forests offer advantages such as easy configuration, native handling of various data types, robustness to noise, and fast inference/training on smaller datasets."],["This course provides a comprehensive understanding of decision trees and forests, including how they make predictions, different types, performance considerations, and effective usage strategies."],["The course uses YDF library code examples to demonstrate concepts, but the knowledge is transferable to other decision forest libraries."],["Basic machine learning knowledge and familiarity with data preprocessing are prerequisites for this course."]]],[]]