
Edu DevRel

[External] Classroom add-ons "Posts" migration guide

July 2023

Introduction

This document is a step-by-step guide for migrating a Classroom add-on implementation off of
the older courses.posts abstraction. In the new implementation, add-on endpoints are part of
the courses.announcements, courses.courseWork and courses.courseWorkMaterials
endpoints directly.

Motivation

This change was motivated by the feedback we received from developers who were interested in
knowing and accessing the underlying item the post was hiding. More precisely, developers were
interested in subscribing to change notifications on the announcements, courseWork or
courseWorkMaterials their add-on was attached to, such as updates to the due date.

By eliminating the posts abstraction, we are more concretely sharing with you the actual
resource the teacher has shared with their students.

Timeline

The developer changes are minor syntactic changes that should require only a couple of days of
developer time. We encourage you to make this change within the next 6 months so that we can
remove the old way from the API. That said, please consult with us if 6 months is unrealistic and
we'll work with you on timing.

Migration

At a high-level, there are 3 main changes to the API:

1. Query parameter postId has been changed to itemId. A new query parameter,
itemType, has been added.

2. courses.posts.getAddOnContext and courses.posts.addOnAttachments have been
moved to Announcements, CourseWork and CourseWorkMaterialsmethods.

3. courses.posts.addOnAttachments.studentSubmissions has been moved to
courses.courseWork.addOnAttachments.studentSubmissions.

Confidential & Proprietary

2

Query Params

For each iframe where you previously received postId as a query parameter, you will now receive
an itemId. The value will be the same, only the parameter name has changed. For a period of
time, you will receive both so that your add-on will not break during the migration period.

To be clear, itemId == postId.

In addition to the itemId, you will also receive an itemType parameter which will have one of 3
values: announcements, courseWork, or courseWorkMaterials.

Before the migration window:

?addOnToken={token}&courseId={courseId}&postId={postId}

During the migration window you will receive both postId and itemId (note: same value):

?addOnToken={token}&courseId={courseId}&postId={postId}&itemId={itemId}&itemType={itemType}

After the migration window:

?addOnToken={token}&courseId={courseId}&itemId={itemId}&itemType={itemType}

Making a helper function

You will need to know the correct parent resource for the add-on API calls you make. This is
provided for you as the itemType query parameter. A reusable helper function will make this
easier for you.

One possible way you could implement this:

--
Get Service
Get the correct service based on item type
#
def get_parent_resource(item_type):

"""Returns the right service based on item type."""

Get the Google Classroom service
classroom_service = ch._credential_handler.get_classroom_service()

match item_type:
case "announcements":

Confidential & Proprietary

3

return classroom_service.courses().announcements()
case "courseWorkMaterials":

return classroom_service.courses().courseWorkMaterials()
case _:

return classroom_service.courses().courseWork()

GetAddOnContext

In order to call getAddOnContext, you will need to know the correct parent resource. This is
provided for you as the itemType query parameter.

One possible way you could implement this:

Choose the correct service based on itemType

parent = get_parent_resource(item_type)

Get the add-on context using the correct service

resp = parent.getAddOnContext(

courseId=course_id,

itemId=item_id,

addOnToken=add_on_token

).execute()

Create add-on attachments

Similar to getAddOnContext, you will also need to use the correct parent resource.

One possible way you could implement this:

Build request body
body = {

'courseId': courseId,
'parentId': parentId,
'title': 'Title of attachment',
'teacherViewUri': {'uri': 'https://example.com/teacherView?id=123'},
'studentViewUri': {'uri': 'https://example.com/studentView?id=123'},
'maxPoints': 100

}

Choose the correct service based on itemType

parent = get_parent_resource(item_type)

Create the add-on context using the correct service

resp = parent.addOnAttachments().create(
courseId=course_id,
parentId=parent_id,
body=body

Confidential & Proprietary

4

).execute()

Patching add-on attachments

One possible way you could implement this:

Build request body and update mask
update_mask = 'AddOnAttachment.teacherViewUri'
body = {'teacherViewUri': {'uri': 'https://example.com/teacherView?id=456'}}

Choose the correct service based on itemType

parent = get_parent_resource(item_type)

Create the add-on context using the correct service

resp = parent.addOnAttachments().patch(
courseId=course_id,
parentId=parent_id,
attachmentId=attachment_id,
updateMask=update_mask,
body=body

).execute()

Patching student submissions

Student submissions only exist on Courses.CourseWork resources.

One possible way you could implement this:

Build request body and update mask
update_mask = 'maxPoints'
body = {

'maxPoints': 100
}

Only courseWork add-ons support student submissions

parent = get_parent_resource("courseWork")

Create the add-on context using the correct service

resp = parent.addOnAttachments().studentSubmissions().patch(
courseId=course_id,
parentId=parent_id,
attachmentId=attachment_id,
updateMask=update_mask,
body=body

).execute()

Confidential & Proprietary

