
Study Guide

Study Guide
Mobile Web Specialist Certification

Use the ​Study Guide​ to prepare for the Mobile Web Specialist Certification exam. The ​Guide
lists the competency areas and individual competencies against which you will be tested. There
are also links to suggested web-based study resources. Note that these resources form only a
small portion of what is available on the web, and we encourage you to do additional research.

Contents

● Basic Website Layout and Styling
● Front End Networking
● Accessibility
● Progressive Web Apps
● Progressive Enhancement
● Performance Optimization and Caching
● Security
● Testing and Debugging
● JavaScript Design Principles
● ES2015 Concepts and​ ​Syntax
● Mobile Web Forms
● Front End JavaScript

Study Guide

Basic Website Layout and Styling
Users expect responsive and visually engaging websites regardless of the device. A web
application's layout and styling must respond to the current display, while continuing to provide
intuitive functionality. You'll be asked to show you can use HTML and CSS to build a web
application’s responsive layout and style that includes:

● Appropriate document type declaration and viewport tags

● A responsive grid-based layout using CSS

● Media queries that provide fluid breakpoints across different screen sizes

● Multimedia tags to display video or play audio

● Responsive images that adjust for the dimensions and resolution of any mobile device

Resources:
● Responsive Web Design
● A Complete Guide to Flexbox
● Using media queries
● Video and audio content

Front End Networking

Because user engagement depends on reliable and effective network requests, you'll be asked
to show you can use JavaScript to set up reliable front end networking protocols by:

● Requesting data using ​fetch()

● Checking response status, then parsing the data into usable format

● Rendering response data to a page

● Configuring POST requests to a database with ​method ​ and ​body ​ parameters

● Using correctly configured cross-origin resource sharing protocol (CORS) ​fetch
requests, depending on the server’s response headers

● Handling ​fetch() ​ request errors with promise chaining

● Diagnosing network issues using debugging and development tools

Resources:
● Using fetch

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://css-tricks.com/snippets/css/a-guide-to-flexbox/
https://developer.mozilla.org/en-US/docs/Web/CSS/Media_Queries/Using_media_queries
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Video_and_audio_content
https://developers.google.com/web/fundamentals/design-and-ui/responsive/

Study Guide

● Introduction to fetch()
● David Walsh's blog on fetch
● Jake Archibald's blog on fetch
● JavaScript Promises: an Introduction
● HTTP access control (CORS)

Accessibility
Web pages and applications should be accessible to all users, including those with visual,
motor, hearing, and cognitive impairments. Using HTML, CSS, JavaScript, you'll be asked to
show you can integrate accessibility best practices into your web pages and applications by:

● Using a logical tab order for tabbed navigation

● Using skip navigation links to bypass navbars and asides

● Avoiding hidden content on the page that impedes tab navigation

● Using heading tags that provide a logical page structure

● Using text alternatives to visual content, such as ​alt ​, ​<label> ​, ​aria-label ​, and
aria-labelledby

● Applying color contrast to all elements and following accessibility best practices

● Sending timely alerts for urgent messages using ​aria-live

● Using custom-built components that integrate keyboard shortcuts and convey their role,
name, state, and current value to all users

● Using semantic markup to keep content and presentation separate when appropriate

Resources:
● Web Fundamentals – Accessibility
● Mobile Accessibility
● Using tabindex
● Focus
● Skip Navigation Links
● ARIA

https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA
https://developers.google.com/web/fundamentals/getting-started/primers/promises
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developers.google.com/web/fundamentals/accessibility/focus/using-tabindex
https://developers.google.com/web/updates/2015/03/introduction-to-fetch
http://webaim.org/techniques/skipnav/
https://developer.mozilla.org/en-US/docs/Learn/Accessibility/Mobile
https://developers.google.com/web/fundamentals/accessibility/focus/
https://jakearchibald.com/2015/thats-so-fetch/
https://davidwalsh.name/fetch
https://developers.google.com/web/fundamentals/accessibility/

Study Guide

Progressive Web Apps

Users expect native applications to be available offline and provide a feature-rich experience
that is launchable from their home page. You'll be asked to show that you can use the Service
Worker Toolbox, HTML, and JavaScript to build out progressive web application features similar
to native applications by:

● Creating a web app that is available offline, and that caches elements by routing
requests through a service worker using the Service Worker Toolbox

● Storing the default display orientation, theme color, display icon (add to home screen),
and splash screen in the web application manifest (or using meta tags)

● Separating critical application functionality and UI into an application shell that can be
loaded independently from the content

Resources:
● Progressive Web Apps
● Web Fundamentals - The App Shell Model
● Your First Progressive Web App
● Using Service Workers
● Service Worker Libraries

Progressive Enhancement
Users expect applications to function consistently on their browser regardless of their device's
capability. Progressively enhanced applications use layered web technologies to provide the
best possible experience across different browsers. You'll be asked to show that you can use
semantic HTML, CSS, and JavaScript to progressively enhance the application based on
browser capabilities​ ​by:

● Loading JavaScript modules progressively to enhance the user experience to the full
extent allowed by their browser

● Taking a "content-first" approach that progressively adds layers to code starting with:

○ Semantic HTML that provides a consistent experience and works in as many
browsers as possible

○ CSS that only concerns itself with proper layout structures, and considers CSS
as a progressive enhancement

https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API/Using_Service_Workers
https://developers.google.com/web/tools/service-worker-libraries/
https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/fundamentals/getting-started/codelabs/your-first-pwapp/
https://developers.google.com/web/fundamentals/architecture/app-shell

Study Guide

○ JavaScript

Resources:
● Progressive Enhancement
● Progressive Enhancement for JavaScript App Developers
● Progressive Enhancement: Start Using CSS Without Breaking Older Browsers

Performance Optimization and Caching
Mobile users demand websites that load nearly instantly, despite poor or absent connectivity.
Because many users also face expensive data caps, you must minimize their application's data
footprint to reduce page load time as much as possible. You'll be asked to show you can
perform performance audits on applications to reduce page load times and maintain responsive
user experiences​ ​by:

● Preventing main thread blocking with a dedicated web worker

● Providing an optimized critical rendering path using:

○ Compressed or minified JavaScript, HTML and CSS files to reduce render
blocking

○ Inline CSS for essential styles on a specific page, with asynchronous loading for
additional styles as necessary

○ Inline JavaScript files for initial rendering only where necessary (or otherwise
eliminated, deferred, or marked as ​async ​)

○ Ordered loading of remaining critical resources and early download of all critical
assets to shorten the critical path length

○ Reduced DOM depth to minimize browser layout/reflow

● Prefetching files that load when resources are available, reducing the time to
meaningful interaction

● Providing client storage that is appropriate to a web application’s data persistence
needs, including:

○ Session state management

○ Asset caching based on their impact on load time and offline functionality

http://blog.formkeep.com/progressive-enhancement-start-using-css-without-breaking-older-browsers/
https://erikrunyon.com/2016/07/progressive-enhancement/
https://www.voorhoede.nl/en/blog/progressive-enhancement-for-javascript-app-developers/

Study Guide

○ Using IndexedDB to store dynamic content in offline mode

Resources:
● Web Fundamentals - Performance
● The Offline Cookbook
● Cache - MDN
● Storage
● Local Storage And How To Use It On Websites
● IndexedDB API

Security
Security is essential in safeguarding server and user data. As a mobile web developer you must
be aware of common security exploits and how to combat them. You'll be asked to show you
can perform routine security audits and integrate security into your workflow to protect web
applications from common security exploits​ ​by:

● Preventing cross-site scripting (XSS) using whitelists within content security policy
headers, user input validation, HTTPS-only, and ensuring that tainted information can’t
be served to the DOM

● Restricting cross-site request forgery (CSRF) attacks by validating that request headers
come from the same origin, and by using CSRF token validation

● Mitigating man-in-the-middle attacks that compromise user data and website integrity by
requesting external resources through HTTPS

● Preventing session hijacking and user account theft by implementing secure logins and
session management including:

○ Authenticating users​ by requiring a user name or ID and at least one item of
verifiable information

○ Using secure cookies to ​maintain authenticated user sessions and prevent
insecure transmission

Resources:
● Cross-site Scripting (XSS)
● Cross-Site Request Forgery (CSRF) Prevention Cheat Sheet
● Man-in-the-middle attack
● Session Hijacking
● Content Security Policy

https://developer.mozilla.org/en-US/docs/Web/API/Storage
https://developer.mozilla.org/en-US/docs/Web/API/Cache
https://developers.google.com/web/fundamentals/performance/
https://www.smashingmagazine.com/2010/10/local-storage-and-how-to-use-it/
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#Synchronizer_.28CSRF.29_Tokens
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/Man-in-the-middle_attack
https://www.owasp.org/index.php/Session_hijacking_attack
https://developers.google.com/web/fundamentals/security/csp/
https://jakearchibald.com/2014/offline-cookbook/
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API

Study Guide

Testing and Debugging
Developers typically work in highly iterative deployment environments, relying on extensive
testing and debugging to maintain functionality and code integrity. You'll be asked to show that
you can verify expected behaviors and diagnose common web application bugs by:

● Writing unit tests that first verify a function’s intended behavior, and then iteratively
modifying its code until it passes those tests

● Setting breakpoints within a complicated function to determine exactly where it
deviates from expected behavior

● Using console logs to output relevant debugging information

● Reproducing and fixing bugs based on user reported issues

Resources:
● Get Started with Debugging JavaScript in Chrome DevTools
● Diagnose and Log to Console
● Debugging Service Workers

JavaScript Design Principles
Mobile web developers are expected to create code that is readable, modular, and maintainable
in large teams. You'll be asked to show you can write code that conforms to object oriented
design principles and JavaScript best practices using:

● Prototypal inheritance to write reusable code that can be passed onto multiple child
objects/functions

● Immediately invoked function expressions that encapsulate functions

● Closures that access a variable outside of a function’s scope

● "this" values bound to a function (e.g., in an event handler)

Resources:
● Key Principles of Maintainable JavaScript
● Learning JavaScript Design Patterns
● Prototypal Inheritance in JavaScript

https://developers.google.com/web/tools/chrome-devtools/javascript/
https://addyosmani.com/resources/essentialjsdesignpatterns/book/
https://developers.google.com/web/fundamentals/getting-started/codelabs/debugging-service-workers/
https://medium.com/@kevincennis/prototypal-inheritance-781bccc97edb#.1kd52miyg
https://code.tutsplus.com/tutorials/key-principles-of-maintainable-javascript--net-25536
https://developers.google.com/web/tools/chrome-devtools/console/console-write

Study Guide

ES2015 Concepts and Syntax

Web developers must stay current with the latest JavaScript features that promote simpler and
more readable code. With polyfills enabling code written in ES2015 JavaScript to be used in
unsupported browsers, there is a strong incentive for developers to begin using the new
features and syntax. You'll be asked to show that you understand and can write ES2015
JavaScript code using:

● JavaScript promises with ES2015 syntax that create asynchronous functions and
incorporate graceful error handling

● Variables that can be used with block scope, function scope, and made immutable
depending on context using ​let ​, ​var ​, and ​const

● String literals that include string interpolation and multi-line strings

● Arrow functions that create anonymous functions and use an unbounded ​this

● Self-contained modules that run a highly specific, reusable function

● Default function parameters that initialize default values for a function when no argument
or​ ​undefined ​ is provided

● for...of ​ loops that can iterate over any iterable object while running a custom
function on each

● Maps that allow for arbitrary key and value pairs that are iterable and include non-string
keys

● Sets that contain only unique, iterable elements where an array would degrade
performance

Resources:
● ES2015
● JavaScript Promises: an Introduction
● Promise
● Template literals
● Arrow Functions
● JavaScript Modules: A Beginner’s Guide
● Default parameters
● For...of​https://medium.freecodecamp.com/javascript-modules-a-beginner-s-guide-783f7d

7a5fcc#.ymbhiyn0f
● Map

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://medium.freecodecamp.com/javascript-modules-a-beginner-s-guide-783f7d7a5fcc#.ymbhiyn0f
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Default_parameters
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://medium.freecodecamp.com/javascript-modules-a-beginner-s-guide-783f7d7a5fcc#.ymbhiyn0f
https://medium.freecodecamp.com/javascript-modules-a-beginner-s-guide-783f7d7a5fcc#.ymbhiyn0f
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/for...of
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developers.google.com/web/shows/ttt/series-2/es2015
https://developers.google.com/web/fundamentals/getting-started/primers/promises
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals

Study Guide

● Set

HTML Forms
Filling out online forms, especially on mobile devices, can be difficult. To improve the user
experience you'll be asked to show that you can use basic HTML5, JavaScript, and the HTML5
Constraint Validation API, to design efficient and secure HTML web forms with:

● Appropriate ​label ​tags associated with inputs

● Inputs with appropriate ​type ​, ​name ​ and ​autocomplete ​ attributes

● Inputs with large touch targets for mobile forms

● Suggestions for user input using the ​datalist ​ element

● Front-end validation of inputs (e.g., ​pattern, maxlength, required ​) and DOM
elements, including:

○ Checking validation errors in real-time with pseudo-classes on inputs

○ Form validation prior to submission (Constraint Validation API)

Resources:

● HTML Forms
● Constraint Validation
● Client-Side Form Validation with HTML5
● Data form validation
● Create Amazing Forms

Front End JavaScript
Users expect web applications to be fully featured with rich content regardless of the device.
Web applications must respond to mobile devices with the speed and user experience of native
applications. You'll be asked to show that you can use JavaScript, without the overhead of
loading a library (such as jQuery), to create front-end functionality that works across all devices
and platforms using:

● DOM elements that are accessed and manipulated dynamically

● Touch and mouse events that contain large hit targets on the front end and work
regardless of platform

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Forms/Data_form_validation
https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5/Constraint_validation
https://developers.google.com/web/fundamentals/design-and-ui/input/forms/
https://www.sitepoint.com/client-side-form-validation-html5/

Study Guide

● The HTML5 History API to provide a logical browser history in a single-page
application

Resources:
● Supporting both TouchEvent and MouseEvent
● Touch events
● Using the HTML5 History API
● Manipulating the browser history

https://developer.mozilla.org/en-US/docs/Web/API/Touch_events
https://css-tricks.com/using-the-html5-history-api/
https://developer.mozilla.org/en-US/docs/Web/API/Touch_events/Supporting_both_TouchEvent_and_MouseEvent
https://developer.mozilla.org/en-US/docs/Web/API/History_API

