# Quaternion

public class Quaternion

A Sceneform quaternion class for floats.

Quaternion operations are Hamiltonian using the right-hand-rule convention.

### Fields

 public float w public float x public float y public float z

### Public Constructors

 Quaternion() Construct Quaternion and set to Identity Quaternion(float x, float y, float z, float w) Construct Quaternion and set each value. Quaternion(Quaternion q) Construct Quaternion using values from another Quaternion Quaternion(Vector3 axis, float angle) Construct Quaternion using an axis/angle to define the rotation Quaternion(Vector3 eulerAngles) Construct Quaternion based on eulerAngles.

### Public Methods

 static Quaternion axisAngle(Vector3 axis, float degrees) Get a new Quaternion using an axis/angle to define the rotation static boolean equals(Quaternion lhs, Quaternion rhs) Compare two Quaternions Tests for equality by calculating the dot product of lhs and rhs. boolean equals(Object other) Returns true if the other object is a Quaternion and the dot product is 1.0 +/- a tolerance. static Quaternion eulerAngles(Vector3 eulerAngles) Get a new Quaternion using eulerAngles to define the rotation. static Quaternion identity() Get a Quaternion set to identity static Vector3 Quaternion inverted() Get a Quaternion with the opposite rotation static Quaternion lookRotation(Vector3 forwardInWorld, Vector3 desiredUpInWorld) Get a new Quaternion representing a rotation towards a specified forward direction. static Quaternion multiply(Quaternion lhs, Quaternion rhs) Create a Quaternion by combining two Quaternions multiply(lhs, rhs) is equivalent to performing the rhs rotation then lhs rotation Ordering is important for this operation. boolean normalize() Rescales the quaternion to the unit length. Quaternion normalized() Get a Quaternion with a matching rotation but scaled to unit length. static Vector3 rotateVector(Quaternion q, Vector3 src) Rotates a Vector3 by a Quaternion static Quaternion rotationBetweenVectors(Vector3 start, Vector3 end) Get a new Quaternion representing the rotation from one vector to another. void set(float qx, float qy, float qz, float qw) Set each value and normalize the Quaternion void set(Vector3 axis, float angle) Update this Quaternion using an axis/angle to define the rotation void set(Quaternion q) Copy values from another Quaternion into this one void setIdentity() Set the Quaternion to identity static Quaternion slerp(Quaternion start, Quaternion end, float t) String toString()

## Public Constructors

#### public Quaternion()

Construct Quaternion and set to Identity

#### public Quaternion(float x, float y, float z, float w)

Construct Quaternion and set each value. The Quaternion will be normalized during construction

#### public Quaternion(Quaternion q)

Construct Quaternion using values from another Quaternion

#### public Quaternion(Vector3 axis, float angle)

Construct Quaternion using an axis/angle to define the rotation

##### Parameters
axis Sets rotation direction Angle size in degrees

#### public Quaternion(Vector3 eulerAngles)

Construct Quaternion based on eulerAngles.

##### Parameters
eulerAngles - the angle in degrees for each axis.
• `eulerAngles(Vector3)`

## Public Methods

#### public static Quaternion axisAngle(Vector3 axis, float degrees)

Get a new Quaternion using an axis/angle to define the rotation

##### Parameters
axis Sets rotation direction Angle size in degrees

#### public static boolean equals(Quaternion lhs, Quaternion rhs)

Compare two Quaternions

Tests for equality by calculating the dot product of lhs and rhs. lhs and -lhs will not be equal according to this function.

#### public boolean equals(Object other)

Returns true if the other object is a Quaternion and the dot product is 1.0 +/- a tolerance.

#### public static Quaternion eulerAngles(Vector3 eulerAngles)

Get a new Quaternion using eulerAngles to define the rotation.

The rotations are applied in Z, Y, X order. This is consistent with other graphics engines. One thing to note is the coordinate systems are different between Sceneform and Unity, so the same angles used here will have cause a different orientation than Unity. Carefully check your parameter values to get the same effect as in other engines.

##### Parameters
eulerAngles - the angles in degrees.

#### public static Quaternion identity()

Get a Quaternion set to identity

#### public Quaternion inverted()

Get a Quaternion with the opposite rotation

##### Returns
• the opposite rotation

#### public static Quaternion lookRotation(Vector3 forwardInWorld, Vector3 desiredUpInWorld)

Get a new Quaternion representing a rotation towards a specified forward direction. If upInWorld is orthogonal to forwardInWorld, then the Y axis is aligned with desiredUpInWorld.

#### public static Quaternion multiply(Quaternion lhs, Quaternion rhs)

Create a Quaternion by combining two Quaternions multiply(lhs, rhs) is equivalent to performing the rhs rotation then lhs rotation Ordering is important for this operation.

##### Returns
• The combined rotation

#### public boolean normalize()

Rescales the quaternion to the unit length.

If the Quaternion can not be scaled, it is set to identity and false is returned.

##### Returns
• true if the Quaternion was non-zero

#### public Quaternion normalized()

Get a Quaternion with a matching rotation but scaled to unit length.

##### Returns
• the quaternion scaled to the unit length, or zero if that can not be done.

#### public static Vector3 rotateVector(Quaternion q, Vector3 src)

Rotates a Vector3 by a Quaternion

##### Returns
• The rotated vector

#### public static Quaternion rotationBetweenVectors(Vector3 start, Vector3 end)

Get a new Quaternion representing the rotation from one vector to another.

#### public void set(float qx, float qy, float qz, float qw)

Set each value and normalize the Quaternion

#### public void set(Vector3 axis, float angle)

Update this Quaternion using an axis/angle to define the rotation

#### public void set(Quaternion q)

Copy values from another Quaternion into this one

#### public void setIdentity()

Set the Quaternion to identity