
Actions on Google

Errors as opportunities

Know what can go wrong

Develop strategies for handling errors

Robust non-error paths

2

2

3

4

Table of contents Page

In Conversation,
There Are No Errors
—

Actions on Google

2

One of the hardest and most often neglected parts
of designing conversational interfaces is knowing
how to recover from so-called “no-match errors”
(the user says something that you don’t recognize)
or “no-input errors” (the user says nothing at all).

Oftentimes, we commonly and mistakenly treat
these error events as edge cases and handle them
too simply, like apologizing and asking the same
question again or handling them with an overly
formulaic and prescriptive approach, which leads to
a stilted experience at best and a really frustrating
experience at worst.

People hear polite prompts such as “I didn’t get
that” or “I’m sorry I didn’t understand”, and the
message they take away is “I don’t understand
anything” or “This technology doesn’t work.” This
means recovering from such “errors” is critical to
your users’ experience and your app’s success.

 Errors as opportunities 

There’s no such thing as a query without intent.
Users always want to do something, even if they
don’t overtly say so. To approach errors in a new way,
treat them as new turns in the dialog with different
conditions. Such cases can be opportunities to forge
more meaningful exchanges with users by building
trust and leveraging their innate expectations of
how everyday conversations are supposed to work.

In human conversations, hesitations and corrections
happen all the time. But in human-to-computer
interactions, they cause timeouts and recognition
errors. The difference is that people take cues from
each other to get back on track, intuitively, and
in real time. But with automated, manufactured
conversations, corrections have to be planned out,
designed, and programmatically accounted for
ahead of time.

The only way to do this while still maintaining a
natural conversational flow is to treat such cases
as inputs that don’t, in and of themselves, lead to
“errors.” For starters, this means using prompts that
give people credit for knowing how to talk.¹ From
there, it means eliminating the bulk of your errors
through preventative strategies, then developing
a targeted strategy that fits each turn in the
conversation and situational context.

 Know what can go wrong 

It takes a lot of things all working together to
make a dialog successful: voice-signal processing,
language parsing, audio-data transmission,
software activation, and more. All the mechanics
have to work properly just to capture the spoken
input and return a relevant result. An unexpected
input then produces an “error event,” and that’s when
things get interesting.

Separating human conditions from the machine
The key thing to remember is that there’s a
difference between the technical conditions that
trigger and respond to such events and what’s
actually happening at the same time from the user’s
perspective. From noise and interruptions, being
cut off mid-sentence, hearing too many choices, or
just being cooperative,² users are experiencing the
“error” in a very real sense and not at all the same
way the application logic is processing it.

From a technical standpoint, four basic things
can go wrong:

1.	 �Failure to get any input, either because there
was none, or it wasn’t detected. As a result,
the system times out waiting for a response.

2.	 �Input is received but not recognized or parsed,
because of background noise or multiple
people talking.

3.	 �Input is recognized, but the app doesn’t know
how to handle it. For example, users might say,
“I don’t know, what can I do?”, and your app
parses the text correctly, but can’t address the
question appropriately.

4.	 �Input is recognized but as the wrong thing—
this can be the worst kind of error, because a
user can head down the wrong path and the
conversation can derail further as a result.

To begin tackling a solution to these, you can
actually start by simply breaking down the problem
further, into just two paths:

1.	 You didn’t get any input (no-input error).

2.	� You got input, but you just weren’t prepared to
handle it (no-match error)

¹ https://developers.google.com/actions/design/unlocking-the-power-of-spoken-language
² https://developers.google.com/actions/design/be-cooperative

https://developers.google.com/actions/design/unlocking-the-power-of-spoken-language
https://developers.google.com/actions/design/be-cooperative

Actions on Google

3

Now you know what you’re trying to solve for
programmatically. However, that’s where the
simplicity stops and a more strategic approach
needs to take over, which is described in the
following sections.

 Develop strategies for handling errors 

Let’s look at how we can handle these errors and
with robust strategies. You can implement some
of these in tools such as API.AI,³ some in code or
fulfillment logic, and some with a combination of
all these.

Effective prompting
Here are several prompting strategies for
resolving errors.

Rapid re-prompt (without context)

•	 “What was that?”

•	 “Say that again?”

Rapid re-prompt (with context)

•	 “Sorry, what time?”

•	 “I missed that number.”

Rephrase the question

•	 “�First, what’s your favorite color?” → “What’s
your favorite color?”

•	 “�Sure, what movie would you like to see?” → “To
get started, what movie do you want to see?”

Reframing the question

•	 “What time is this for?” → “Sorry, what time?”

•	 “�For when?” → “What time would you like to
book this for?”

Answering an unasked question

•	 “�I have your name and email from your account,
so now all I need is your phone number.”

•	 “You can give me the day, the time, or both.”

Being proactive

•	 “�I could put you down for 6 p.m. for now, does
that work?

•	 “Do you want to finish this later?”

Help in the moment
One important repair strategy involves preparing
for users who get confused, didn’t hear a question,
or are unsure what to say. In these cases, you
can apply preventative strategies, such as using
intuitive language and well-crafted prompts.
However, be ready anyway for people asking to hear
something again (e.g. “can you say that again?”, or
a repeat intent), or saying something like “Help” or
“I don’t know.”

Know when to quit
Another basic strategy to prevent frustration is to
make it easier for users to leave the conversation
if they haven’t completed a task or validated a
response, because they might need to stop for
a variety of reasons. After all, life gets in the way
sometimes. Being prepared for the user’s departure
is not only key to preventing errors, it’s the right thing
to do. It also can be an opportunity to re-engage with
them later by letting users know how to come back
and pick up where they left off, but without getting
in their way.

Example (app quits):

App I’m thinking of a number. What’s your
first guess?

App I didn’t hear a number.

App If you’re still there, what’s your guess?

App We can stop here. Let’s play again soon.

Example (user quits):

User Let’s stop playing.

App Ok. Your score was 3 out of 5. Talk to
you later.

 Robust non-error paths 

A powerful notion to remember is that users who
aren’t encountering errors should feel like they’re
progressing. That way, if they do encounter an error
later, they won’t feel derailed.

³ https://api.ai

https:/.dialogflow.com

Actions on Google

4

Sound more human throughout
One way to sound natural and to “disguise” errors
is by inserting variability to make the conversation
more engaging, not just in error prompts but
throughout the dialog. Use randomization and
variable content in questions and responses to help
mix things up.

Here are some useful strategies for making your
app sound more human:

•	 �Use a list of prompts and scale to any number
of them without changing the code.

•	 Select from those prompts randomly.

•	 �Combine prompts to create a large number of
permutations.

•	 �Add dynamic values by formatting prompts
with placeholder symbols that are replaced at
runtime: “Welcome, %s.”

•	 �Remember previous prompts and avoid
using them again when randomly picking the
next prompts.

•	 �Track the number of errors, then adjust your
prompts so they’re more relevant to the most
common errors.

Work to earn users’ trust
Be prepared for basic questions that users might
ask to poke at the system just to figure out what it
can do. Think of it this way: to establish trust with
a neighbor, you might borrow a cup of sugar before
you ask to borrow the lawnmower. People want to
see if the UI they’re interacting with knows what
they expect it to know.

Be proactive and leverage success
Reminding users how far they’ve come or that they
don’t have far to go to wrap things up helps to get
them back on track.

Depending on your app’s persona and how assertive
it is, you may also want to take control of a situation
to keep the conversation moving forward.

→→ Don’t treat technical error
“events” as users misbehaving

→→ Handle different types
of error events with the
appropriate strategy

→→ Prevent errors by providing
help in the moment

→→ Know when to give up

→→ Make the success path more
robust to “disguise” errors

Best practices
Remember to treat input “errors” as

natural parts of the conversation

Copyright © 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc.
All other company and product names may be trademarks of the respective companies with which they are associated.

